Text Analytics Toolbox™
Reference

MATLAB

R2023a ¢ } MathWorkse



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Text Analytics Toolbox™ Reference
© COPYRIGHT 2017-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

September 2017 Online Only New for Version 1.0

March 2018 Online Only Revised for Version 1.1 (Release 2018a)
September 2018 Online Only Revised for Version 1.2 (Release 2018b)
March 2019 Online Only Revised for Version 1.3 (Release 2019a)
September 2019 Online Only Revised for Version 1.4 (Release 2019b)
March 2020 Online Only Revised for Version 1.5 (Release 2020a)
September 2020 Online Only Revised for Version 1.6 (Release 2020b)
March 2021 Online Only Revised for Version 1.7 (Release 2021a)
September 2021 Online Only Revised for Version 1.8 (Release 2021b)
March 2022 Online Only Revised for Version 1.8.1 (Release 2022a)
September 2022 Online Only Revised for Version 1.9 (Release 2022b)

March 2023 Online Only Revised for Version 1.10 (Release 2023a)


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Live Editor Tasks

1]

Functions

2|

iii






Live Editor Tasks




1 Live Editor Tasks

Preprocess Text Data

Preprocess and clean up text data for analysis

Description

The Preprocess Text Data Live Editor task helps prepare text data for analysis.
You can use the task to control these processing steps:

* HTML clean up

» Tokenization

* Adding token details

*  Word normalization

* Changing and removing words

The Preprocess Text Data Live Editor task generates code that performs the selected preprocessing
steps, which you can use to create a preprocessing function for your workflows.
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Open the Preprocess Text Data

To add the Preprocess Text Data task to a live script in the MATLAB® Editor:

* On the Live Editor tab, select Task > Preprocess Text Data.

* In a code block in the live script, type a relevant keyword, such as preprocess, clean, or text.
Select Preprocess Text Data from the suggested command completions.

Examples

Create Simple Preprocessing Function

This example shows how to create a function which cleans and preprocesses text data for analysis
using the Preprocess Text Data Live Editor task.

First, load the factory reports data. The data contains textual descriptions of factory failure events.

tbl = readtable("factoryReports.csv")

1 = 488x5 table
Description Category Urgency
‘Items are occasionally getting stuck in the scanner spools.” ‘Mechanical Failure ‘Medium’
2 ‘Loud rattling and banging sounds are coming from assembler pistons.' ‘Mechanical Failure' "Medium’
3 "There are cuts to the power when starting the plant. 'Electronic Failure' "High'
4 ‘Fried capacitors in the assembler” ‘Electronic Failure’ "High'
5 ‘Mixer tripped the fuses”’ ‘Electronic Failure’ "Low'
G "Burst pipe in the constructing agent is spraying coolant.' ‘Leak’ "High'
7 |"Afuse is blown in the mixer.' ‘Electronic Failure ‘Low'
8 "Things continue to tumble off of the belt’ ‘Mechanical Failure' "Low’
9 |'Fallina items from the convevor belt.” ‘Mechanical Failure’ ‘Low'

Open the Preprocess Text Data Live Editor task. To open the task, begin typing the keyword
preprocess and select Preprocess Text Data from the suggested command completions.
Alternatively, on the Live Editor tab, select Task > Preprocess Text Data.

preprocess Text Data

% Preprocess Text Data Preprocess and clean up text data H}

Preprocess the text using these options:

Select tbl as the input data and select the table variable Description.
Tokenize the text using automatic language detection.
To improve lemmatization, add part-of-speech tags to the token details.

A W N -

Normalize the words using lemmatization.




Preprocess Text Data

5 Remove words with fewer than 3 characters or more than 14 characters.
6 Remove stop words.
7  Erase punctuation.
8 Display the preprocessed text in a word cloud.
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The Preprocess Text Data Live Editor task generates code in your live script. The generated code
reflects the options that you select and includes code to generate the display. To see the generated
code, click the = at the bottom of the task parameter area. The task expands to display the generated
code.

%% Preprocess Text
preprocessedText = tbl.Description;

% Tokenize
preprocessedText = tokenizedDocument(preprocessedText);

% Add token details
preprocessedText = addPartOfSpeechDetails(preprocessedText);

% Change and remove words

preprocessedText = normalizeWords(preprocessedText,Style="1lemma");
preprocessedText = removeShortWords(preprocessedText,2);
preprocessedText = removelonghords(preprocessadText,15);
preprocessedText = removeStoplords(preprocessedText, IgnoreCase=false);
preprocessedText = erasePunctuation(preprocessedText);

% Display results
wordcloud({preprocessedText);
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Preprocess Text Data

By default, the generated code uses preprocessedText as the name of the output variable returned
to the MATLAB workspace. To specify a different output variable name, enter a new name in the
summary line at the top of the task.

Preprocess Text Data

| preprocessedText| = Preprocess text in tbl

To reuse the same steps in your code, create a function that takes as input the text data and outputs
the preprocessed text data. You can include the function at the end of a script or as a separate file.
The preprocessTextData function listed at the end of the example, uses the code generated by the
Preprocess Text Data Live Editor task.

To use the function, specify the table as input to the preprocessTextData function.
documents = preprocessTextData(tbl);

Preprocessing Function

The preprocessTextData function uses the code generated by the Preprocess Text Data Live
Editor task. The function takes as input the table tb1l and returns the preprocessed text
preprocessedText. The function performs the these steps:

1 Extract the text data from the Description variable of the input table.

Tokenize the text using tokenizedDocument.

Add part-of-speech details using addPart0fSpeechDetails.

Lemmatize the words using normalizeWords.

Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

Remove stop words (such as "and", "of", and "the") using removeStopWords.
Erase punctuation using erasePunctuation.

00 N OO Ul A W N

function preprocessedText = preprocessTextData(tbl)

% Preprocess Text
r

preprocessedText = tbl.Description;

% Tokenize
preprocessedText = tokenizedDocument(preprocessedText);

% Add token details
preprocessedText = addPartOfSpeechDetails(preprocessedText);

% Change and remove words

preprocessedText = normalizeWords(preprocessedText,Style="lemma");
preprocessedText = removeShortWords(preprocessedText,2);
preprocessedText = removeLongWords(preprocessedText,15);
preprocessedText = removeStopWords(preprocessedText,IgnoreCase=false);
preprocessedText = erasePunctuation(preprocessedText);

end

For an example showing a more detailed workflow, see “Preprocess Text Data in Live Editor”. For
next steps in text analytics, you can try creating a classification model or analyze the data using topic
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models. For examples, see “Create Simple Text Model for Classification” and “Analyze Text Data
Using Topic Models”.

Parameters
Select Data

Data — Text to preprocess
workspace variable

Text to preprocess, specified as a MATLAB workspace variable. The variable must be a table, string
array, or character vector to appear in the list.

If you select a table, then specify the table variable containing the text data in the second drop-down
box that appears.

Clean Up HTML

Extract HTML text — Extract text data from HTML tags
off (default) | on

Extract text data from HTML tags.
The generated code uses extractFileText.

Remove HTML tags — Remove HTML tags
off (default) | on

Remove HTML tags.
The generated code uses eraseTags.

Decode HTML entities — Convert HTML and XML entities into characters
off (default) | on

Convert HTML and XML entities into characters. For example convert "&amp; " to "&".

The generated code uses decodeHTMLEntities.

Tokenize

Language — Text language
Automatic (default) | English | German | Japanese | Korean

Text language, specified as one of these options:

Automatic

Automatic language detection
English

English language
German

German language



Preprocess Text Data

Japanese

Japanese language
Korean

Korean language

The generated code uses tokenizedDocument.

Split — Text splitting mode
None (default) | Sentences | Paragraphs

Text splitting mode, specified as one of these options:

None
Do not split input.
Sentences
Split input into sentences. This option supports scalar input only.

The generated code uses splitSentences.
Paragraphs
Split input into paragraphs. This option supports scalar input only.

The generated code uses splitParagraphs.

Add Token Details

Add sentence numbers — Option to add sentence numbers
off (default) | on

Option to add sentence numbers to tokens.
The generated code uses addSentenceDetails.

Add part-of-speech tags — Option to add part-of-speech tags
on (default) | of f

Option to add part-of-speech tags to tokens.
The generated code uses addPart0fSpeechDetails.

Detect named entities — Option to detect named entities
off (default) | on

Option to detect named entities in tokens.
The generated code uses addEntityDetails.

Parse dependencies — Option to parse dependencies
off (default) | on

Option to parse dependencies in tokens. This option requires Text Analytics Toolbox™ Model for Udify
data support package.

The generated code uses addDependencyDetails.

1-9



1 Live Editor Tasks

Token Edit and Removal

Word normalization — Word normalization
Lemma (default) | Stem | None

Word normalization, specified as one of these options:

None

Do not normalize words.
Lemma

Normalize words using lemmatization. This option outputs text in lowercase.
Stem

Normalize words using stemming.

The generated code uses normalizeWords.

Case normalization — Case normalization
None (default) | Uppercase | Lowercase

Case normalization, specified as one of these options:

None

Do not normalize case.

Note The Lemma option of Word normalization converts text to lowercase.

Lowercase

Convert text to lowercase.

The generated code uses lower.
Uppercase
Convert text to uppercase.

The generated code uses upper.

Minimum word length — Minimum word length
3 (default) | positive integer | off

Minimum word length, specified as of these options:

* off — Do not remove short words
* positive integer — remove words with fewer than the specified number of characters

The generated code uses removeShortWords.

Maximum word length — Maximum word length
14 (default) | positive integer | of f

Maximum word length, specified as of these options:

1-10



Preprocess Text Data

* off — Do not remove long words

* positive integer — remove words with more than the specified number of characters

The generated code uses removelLongWords.

Remove stop words — Option to remove stop words
on (default) | of f

Option to remove stop words.
The generated code uses removeStopWords.

Remove Erase punctuation — Option to erase punctuation
on (default) | of f

Option to erase punctuation.
The generated code uses erasePunctuation.

Replace words — Source and target words for replacement
pairs of source and target strings

Source and target words for replacement, specified as pairs of source and target strings. To specify

multiword phrases (n-grams), use whitespace separated words.

The generated code uses replaceWords and replaceNgrams.

Remove words — Words to remove
string

Words to remove, specified as strings. To specify multiword phrases (n-grams), use whitespace

separated words.

The generated code uses removeWords and removeNgrams.

Remove empty documents — Option to remove empty documents

off (default) | on
Option to remove empty documents.
The generated code uses removeEmptyDocuments.

Ignore case — Option to ignore case
off (default) | on

Option to ignore case in word change and removal options.
Display Results

Show tokenized text — Option to show tokenized text
off (default) | on

Option to show tokenized text.

Show token details — Option to show token details
off (default) | on
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Option to show token details.
The generated code uses tokenDetails.

Show word cloud — Option to show word cloud
off (default) | on

Option to show word cloud.

The generated code uses wordcloud.

Tips

* By default, the Preprocess Text Data task does not automatically run when you modify the task

parameters. To have the task run automatically after any change, select the autorun © button at
the top-right of the task. If your data set is large, do not enable this option.

Version History
Introduced in R2023a

See Also
tokenizedDocument | erasePunctuation | removeStopWords | removeShortWords |
removeLongWords | normalizeWords | addPart0fSpeechDetails

Topics

“Preprocess Text Data in Live Editor”
“Try Text Analytics in 10 Lines of Code”
“Import Text Data into MATLAB”

“Get Started with Topic Modeling”
“Visualize Text Data Using Word Clouds”
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abbreviations

Table of common abbreviations

Syntax
tbl = abbreviations
tbl = abbreviations('Language', language)

Description

Abbreviations containing periods like "appt.”, "Dr.", and "fig." affect sentence detection. The
addSentenceDetails and addPartOfSpeechDetails functions use tables of abbreviations to
detect sentence boundaries. The abbreviations function outputs the default table used by these
functions. You can use this table to help create custom tables of abbreviations to specify sentence
detection behavior.

The function supports English, Japanese, German, and Korean language. The Japanese and Korean
abbreviation lists are empty because in these languages, abbreviations do not usually impact
sentence detection.

tbl = abbreviations returns a table of common English abbreviations.
tbl = abbreviations('Language', language) specifies the abbreviation language.
Examples

Table of Abbreviations

View a table of abbreviations. You can use this table to detect abbreviations and sentences when
using addSentenceDetails.

tbl = abbreviations;

head(tbl)
Abbreviation Usage
"ATS" regular
"Ao" regular
"BEF" regular
"Ba" regular
"Bd" regular
"Bi" regular
"Bq" regular
"Cent" regular



abbreviations

Table of German Abbreviations

View a table of German abbreviations. Use this table to help create custom tables of abbreviations for
sentence detection when using addSentenceDetails.

tbl = abbreviations('Language', 'de');

head (tbl)
Abbreviation Usage
"A.T" regular
"ABl" regular
"Abb" regular
“"Abdr" regular
"Abf" regular
"Abfl" regular
“Abh" regular
"Abk" regular

Input Arguments

language — Abbreviation language
‘en' (default) | 'ja' | 'de' | "ko'

Abbreviation language, specified as one of the following:

* 'en' -English
* 'ja' -Japanese
+ 'de' - German

e 'ko' - Korean

If you specify 'ja' or 'ko', then the function returns an empty table. For more information about
language support in Text Analytics Toolbox, see “Language Considerations”.

Output Arguments

tb1l — Table of abbreviations
table

Table of abbreviations. The addSentenceDetails and splitSentences functions, by default, use
this table to detect sentence boundaries. This table only contains abbreviations typically written with
periods.

The table has two variables:

* Abbreviation - Abbreviation, specified as a string
* Usage - Type of abbreviation, specified as a categorical scalar

The following table describes the possible values of Usage and the behavior of
addSentenceDetails and splitSentences when observing abbreviations of these types.
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word is a number
and the following
word is a
capitalized
sentence starter,
then break at a
trailing period.

If the previous
word is a number
and the following
word is not
capitalized, then
do not break at a
trailing period.

If the previous
word is not a
number, then
break at a trailing
period.

30 in. The
width is 10
in."

Usage Behavior Example Example Text Detected
Abbreviation Sentences

regular If the next word is |"appt." "Book an appt. ["Book an
a capitalized We'll meet appt."
sentence starter, then."
then break at the "We'll meet
trailing period. then."
Otherwise, do not "Book an appt. |"Book an appt.
break at the today." today."
trailing period.

inner Do not break after |"Dr." "Dr. Smith." "Dr. Smith."
trailing period.

reference If the next token is |"fig." "See fig. 3." ["See fig. 3."
not a number, then " . " P

; Try a fig. Try a fig.

break at a trailing Th ez are d y d
period. If the next hice. "They are
token is a number, nice."
then do not break
at the trailing
period.

unit If the previous “in." "The height is ["The height is

30 in."

"The width is
10 in."

"The item is
10 in. wide."

"The item is
10 in. wide."

"Come in. Sit
down."

"Come in."

"Sit down."

The Japanese and Korean abbreviation lists are empty because in these languages, abbreviations do
not usually impact sentence detection

Version History
Introduced in R2018a
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See Also
tokenDetails | addSentenceDetails | addPartOfSpeechDetails | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

2-5



2 Functions

2-6

addDocument

Add documents to bag-of-words or bag-of-n-grams model

Syntax

newBag = addDocument (bag,documents)

Description

newBag = addDocument(bag,documents) adds documents to the bag-of-words or bag-of-n-grams
model bag.

Examples

Add Documents to Bag-of-Words Model

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents)

bag =
bag0fWords with properties:

Counts: [2x7 double]
Vocabulary: ["an" "example" "of" "a" "short" "sentence" "second"]
NumWords: 7
NumDocuments: 2

Create another array of tokenized documents and add it to the same bag-of-words model.

documents = tokenizedDocument ([
"a third example of a short sentence"
"another short sentence"]);

newBag = addDocument(bag,documents)

newBag =
bag0fWords with properties:

Counts: [4x9 double]
Vocabulary: ["an" "example" "of" "a" "short" "sentence" "second"
NumWords: 9
NumDocuments: 4

"thi



addDocument

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file names
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the read function to be
extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn', readFcn);

Create an empty bag-of-words model.

bag = bag0fWords

bag =
bagO0fWords with properties:
Counts: []
Vocabulary: [1x0 string]
NumWords: 0O

NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and add the
document to bag.

while hasdata(fds)
str = read(fds);
document = tokenizedDocument(str);
bag = addDocument(bag,document);
end

View the updated bag-of-words model.
bag

bag =
bagOfWords with properties:

Counts: [4x276 double]
Vocabulary: ["From" "fairest" "creatures"
NumWords: 276
NumDocuments: 4

we "desire" "increase

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors
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Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

Output Arguments

newBag — Output model
bagO0fWords object | bag0OfNgrams object

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of newBag is
the same as the type of bag.

Version History
Introduced in R2017b

See Also

bagO0fWords | bag0OfNgrams | removeDocument | removeEmptyDocuments |
tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”



addDependencyDetails

addDependencyDetails

Add grammatical dependency details to documents

Syntax

updatedDocuments = addDependencyDetails(documents)

Description
Use addDependencyDetails to add grammatical dependency details to documents.

The function requires Deep Learning Toolbox™ and the Text Analytics Toolbox Model for UDify Data
support package. The function supports English, Japanese, German, and Korean text.

updatedDocuments = addDependencyDetails(documents) adds grammatical dependency
details to documents and updates the token details. To get the dependency details from
updatedDocuments, use tokenDetails.

Examples

Add Grammatical Dependency Details to Document

Create a tokenized document object containing a single sentence.

str = "The quick brown fox jumped over the lazy dog.";
document = tokenizedDocument(str)

document =
tokenizedDocument:

10 tokens: The quick brown fox jumped over the lazy dog .

Add grammatical dependency details to the document. The addDependencyDetails function
requires the Text Analytics Toolbox™ Model for UDify Data support package. If you do not have this
support package installed, then the function provides a download link.

document = addDependencyDetails(document);

View the token details using the tokenDetails function. The Head and Dependency variables of
the table form a tree structure of the dependency details. For example, because the word "lazy"
modifies the word "dog" in this sentence, the token details table lists the token number of "dog" as
the head of the token "lazy".

details = tokenDetails(document)

details=10x8 table
Token DocumentNumber SentenceNumber LineNumber Type Language

"The" 1 1 1 letters en

2-9
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"quick"
"brown"
"fox"
"jumped"
"over"
"the"
"lazy"
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Visualize the dependency details in a sentence chart. Solid lines indicate dependencies and dotted

lines indicate subtree labels.

figure
sentenceChart(document)

1aund

E : .
The quick brown fox jumped over the lazy dog .

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

e N = N = ISy Sy e}

letters
letters
letters
letters
letters
letters
letters
letters
punctuation

en
en
en
en
en
en
en
en
en
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Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

Algorithms
Grammatical Dependency Parsing

The addDependencyDetails function adds grammatical dependency tags to the table returned by
the tokenDetails function. The function tags each token with a categorical tag defined by
Universal Dependencies. [1]

The dependency types listed here are only a subset. For a complete list of dependency types,
including subtypes, see [1].

e acl — clausal modifier of noun (adnominal clause)
* advcl — adverbial clause modifier

* advmod — adverbial modifier

* amod — adjectival modifier

* appos — appositional modifier

* aux — auxiliary

* case — case marking

* cc — coordinating conjunction

* ccomp — clausal complement

* clf — classifier

e compound — compound

* conj — conjunct

* cop — copula

* csubj — clausal subject

* dep — unspecified dependency

* det — determiner

* discourse — discourse element

* dislocated — dislocated elements
* expl — expletive

+ fixed — fixed multiword expression
+ flat — flat multiword expression

* goeswith — goes with

* 1iobj — indirect object

o list —list

* mark — marker
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nmod — nominal modifier

nsubj — nominal subject

nummod — numeric modifier

obj — object

obl — oblique nominal

orphan — orphan

parataxis — parataxis

punct — punctuation
reparandum — overridden disfluency
root — root

vocative — vocative

xcomp — open clausal complement

Version History
Introduced in R2022b

References

[1] Universal Dependency Relations https://universaldependencies.org/u/dep/index.html.

See Also

sentenceChart | tokenDetails | addLemmaDetails | addSentenceDetails |
addPart0fSpeechDetails | addLanguageDetails | addTypeDetails | addLemmaDetails |
normalizeWords | tokenizedDocument | addEntityDetails

Topics

“Analyze Sentence Structure Using Grammatical Dependency Parsing”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Language Considerations”
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addEntityDetails

Add entity tags to documents

Syntax

updatedDocuments = addEntityDetails(documents)
updatedDocuments = addEntityDetails(documents,Name,Value)
Description

Use addEntityDetails to add entity tags to documents.

Use addEntityDetails to detect person names, locations, organizations, and other named entities
in text. This process is known as named entity recognition.

The function supports English, Japanese, German, and Korean text.

updatedDocuments = addEntityDetails(documents) detects the named entities in
documents. The function adds details to the tokens with missing entity details only. To get the entity
details from updatedDocuments, use tokenDetails.

updatedDocuments = addEntityDetails(documents,Name,Value) also specifies additional
options using one or more name-value pairs.

Tip Use addEntityDetails before using the Lower, upper, normalizeWords, removeWords,
and removeStopWords functions as addEntityDetails uses information that is removed by these
functions.

Examples

Add Named Entity Tags to Documents

Create a tokenized document array.

str = [
"Mary moved to Natick, Massachusetts."
"John uses MATLAB at MathWorks."];
documents = tokenizedDocument(str);

Add the entity details to the documents using the addEntityDetails function. This function detects
the named entities in the text and adds the details to the table returned by the tokenDetails
function. View the updated token details of the first few tokens.

documents = addEntityDetails(documents);
tdetails = tokenDetails(documents)

tdetails=13x8 table
Token DocumentNumber SentenceNumber LineNumber Type Language
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"Mary" 1 1 1 letters en
"moved"” 1 1 1 letters en
“to" 1 1 1 letters en
"Natick" 1 1 1 letters en
" 1 1 1 punctuation en
"Massachusetts" 1 1 1 letters en
o 1 1 1 punctuation en
"John" 2 1 1 letters en
"uses" 2 1 1 letters en
"MATLAB" 2 1 1 letters en
"at" 2 1 1 letters en
"MathWorks" 2 1 1 letters en
o 2 1 1 punctuation en

View the words tagged with the entities "person"”, "location", "organization", or "other".

These words are the words not tagged with "non-entity".

idx = tdetails.Entity ~= "non-entity";

tdetails.Token(idx)

ans = 6x1 string
"Mary"
"Natick"
"Massachusetts"
"John"
"MATLAB"
"MathWorks"

Add Named Entity Tags to Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
"I —ZAIRR oL Za—T =95 oLELZ, "
"BRANBARSAZTHMAITITEET, "
"HIRIFKREYKREWNTIM?"
"HRRICIT o 1B, FIECESLEVWANALmEANEL, "];

documents = tokenizedDocument(str);

For Japanese text, the software automatically adds named entity tags, so you do not need to use the

addEntityDetails function. This software detects person names, locations, organizations, and

other named entities. To view the entity details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)

Token DocumentNumber LineNumber Type Language PartOfSpeech Ler
=) —=" 1 1 letters ja proper-noun ") -
"EA 1 1 letters ja noun "EA"
T 1 1 letters ja adposition "
"RA R 1 1 letters ja proper-noun "R b
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"M 1 1 letters ja adposition "hin!
"Za—34-—o" 1 1 letters ja proper-noun "Za-
iz 1 1 letters ja adposition ez

"Flo@L" 1 1 letters ja verb "5l i

View the words tagged with entity "person", "location", "organization", or "other". These
words are the words not tagged "non-entity".

idx = tdetails.Entity ~= "non-entity";
tdetails(idx, :).Token

ans = 11x1 string
N1y —u
IIéA/II
"RR R
||::L_3_7||
"R
IIéA/II
”i:%":"
PN
”i:%":"
"EE"

[IINT
2%

Add Named Entity Tags to German Text

Tokenize German text using tokenizedDocument.
str = [
"Ernst zog von Frankfurt nach Berlin."

"Besuchen Sie Volkswagen in Wolfsburg."];
documents = tokenizedDocument(str);

To add entity tags to German text, use the addEntityDetails function. This function detects person
names, locations, organizations, and other named entities.

documents = addEntityDetails(documents);
To view the entity details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)

Token DocumentNumber SentenceNumber LineNumber Type Language I
"Ernst" 1 1 1 letters de |
"zog" 1 1 1 letters de !
“von" 1 1 1 letters de E
"Frankfurt" 1 1 1 letters de [
"nach" 1 1 1 letters de ;
"Berlin" 1 1 1 letters de [
wo 1 1 1 punctuation de [
"Besuchen" 2 1 1 letters de !
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View the words tagged with entity "person", "location", "organization", or "other". These
words are the words not tagged with "non-entity".

idx = tdetails.Entity ~= "non-entity";
tdetails(idx, :)

ans=5x8 table

Token DocumentNumber SentenceNumber LineNumber Type Language
"Ernst"” 1 1 1 letters de
“Frankfurt"” 1 1 1 letters de
“Berlin" 1 1 1 letters de
"Volkswagen" 2 1 1 letters de
"Wolfsburg" 2 1 1 letters de

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: DiscardKnownValues=true specifies to discard previously computed details and
recompute them.

RetokenizeMethod — Method to retokenize documents
"entity" (default) | "none"

Method to retokenize documents, specified as one of the following:

* "entity" - Transform the tokens for named entity recognition. The function merges tokens from
the same entity into a single token.

* "none" - Do not retokenize the documents.

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Model — NER model
"auto" (default) | hmmEntityModel object

Custom NER model, specified as one of these values:

Par

proj
proj
proj
noul
proj
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* "auto" — Use the built-in NER model.

* hmmEntityModel object — Use the specified custom NER model. To train a custom NER model,
use the trainHMMEntityModel function. For an example, see “Train Custom Named Entity
Recognition Model”.

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

Algorithms
Language Details

tokenizedDocument objects contain details about the tokens including language details. The
language details of the input documents determine the behavior of addEntityDetails. The
tokenizedDocument function, by default, automatically detects the language of the input text. To
specify the language details manually, use the Language option of tokenizedDocument. To view the
token details, use the tokenDetails function.

Version History
Introduced in R2019a

R2023a: Specify custom NER model

To specify a custom NER model, use the Model name-value argument. To train a custom NER model,
use the trainHMMEntityModel function. For an example, see “Train Custom Named Entity
Recognition Model”.

See Also

tokenizedDocument | addLanguageDetails | tokenDetails | addSentenceDetails |
addPartOfSpeechDetails | splitSentences | abbreviations | topLevelDomains |
corpusLanguage | addTypeDetails | addLemmaDetails

Topics

“Train Custom Named Entity Recognition Model”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Language Considerations”

“Japanese Language Support”

“German Language Support”
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addLanguageDetails

Add language identifiers to documents

Syntax

updatedDocuments = addLanguageDetails(documents)
updatedDocuments = addLanguageDetails(documents,Name,Value)

Description
Use addLanguageDetails to add language identifiers to documents.
The function supports English, Japanese, German, and Korean text.

updatedDocuments = addLanguageDetails(documents) detects the language of documents
and updates the token details. The function adds details to the tokens with missing language details
only. To get the language details from updatedDocuments, use tokenDetails.

updatedDocuments = addLanguageDetails(documents,Name,Value) specifies additional
options using one or more name-value pairs.

Tip Use addLanguageDetails before using the Lower and upper functions as
addLanguageDetails uses information that is removed by this functions.

Examples

Add Language Details to Documents

Manually tokenize some text by splitting it into an array of words. Convert the manually tokenized
text into a tokenizedDocument object by setting the ' TokenizeMethod' option to 'none’.

str = split("an example of a short sentence")';
documents = tokenizedDocument(str, 'TokenizeMethod', 'none');

View the token details using tokenDetails.

tdetails = tokenDetails(documents)

tdetails=6x2 table
Token DocumentNumber

nan®
"example"
n O.f: 1]

ngn
"short"

"sentence"

R R
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When you specify 'TokenizeMethod', 'none’, the function does not automatically detect the
language details of the documents. To add the language details, use the addLanguageDetails
function. This function, by default, automatically detects the language.

documents = addLanguageDetails(documents);
View the updated token details using tokenDetails.
tdetails = tokenDetails(documents)

tdetails=6x4 table

Token DocumentNumber Type Language
"an" 1 letters en
"example" 1 letters en
"of" 1 letters en
"a" 1 letters en
"short" 1 letters en
"sentence" 1 letters en

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DiscardKnownValues', true specifies to discard previously computed details and
recompute them.

Language — Language

Ienllljal|ldel|lkol

Language, specified as one of the following:

* 'en' - English

* 'ja' -Japanese

* 'de' - German

* 'ko' - Korean

If you do not specify a value, then the function detects the language from the input text using the
corpusLanguage function.

This option specifies the language details of the tokens. To view the language details of the tokens,
use tokenDetails. These language details determine the behavior of the removeStopWords,
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addPart0fSpeechDetails, normalizeWords, addSentenceDetails, and addEntityDetails
functions on the tokens.

For more information about language support in Text Analytics Toolbox, see “Language
Considerations”.

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

Version History
Introduced in R2018b

See Also

tokenizedDocument | tokenDetails | addSentenceDetails | addPartOfSpeechDetails |
splitSentences | abbreviations | topLevelDomains | corpusLanguage | addTypeDetails |
addLemmaDetails | addDependencyDetails | addEntityDetails

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Japanese Language Support”

“Language Considerations”

“German Language Support”
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addLemmaDetails

Add lemma forms of tokens to documents

Syntax

updatedDocuments = addLemmaDetails(documents)
updatedDocuments = addLemmaDetails(documents, 'DiscardKnownValues', true)

Description
Use addLemmaDetails to add lemma forms to documents.
The function supports English, Japanese, and Korean text.

updatedDocuments = addLemmaDetails(documents) adds lemma details to documents and
updates the token details. To get the lemma details from updatedDocuments, use tokenDetails.

updatedDocuments = addLemmaDetails(documents, 'DiscardKnownValues', true)
discards previously computed details and recomputes them.

Tip Use addLemmaDetails before using the Lower, upper, and normalizeWords functions as
addLemmaDetails uses information that is removed by these functions.

Examples

Add Lemma Details to Documents

Create a tokenized document array.

str = [ ...
"The dogs ran after the cat."
"I am building a house."];
documents = tokenizedDocument(str);

Add lemma details to the documents using addLemmaDetails. This function lemmatizes the text and
adds the lemma form of each token to the table returned by tokenDetails. View the updated token
details of the first few tokens.

documents = addLemmaDetails(documents);
tdetails = tokenDetails(documents);

head(tdetails)
Token DocumentNumber LineNumber Type Language Lemma
"The" 1 1 letters en "the"
"dogs" 1 1 letters en "dog"
"ran" 1 1 letters en "run"
"after" 1 1 letters en "after"
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"the" 1 1 letters
"cat" 1 1 letters
1 1 punctuation
"I 2 1 letters

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

en
en
en
en

"the"
"Cat"

Updated documents, returned as a tokenizedDocument array. To get the token details from

updatedDocuments, use tokenDetails.

Version History
Introduced in R2018b

See Also

tokenDetails | addDependencyDetails | addSentenceDetails | addPart0fSpeechDetails |
addLanguageDetails | addTypeDetails | normalizeWords | tokenizedDocument |

addEntityDetails

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”
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addPartOfSpeechDetails

Add part-of-speech tags to documents

Syntax

updatedDocuments = addPartOfSpeechDetails(documents)
updatedDocuments = addPartOfSpeechDetails(documents,Name,Value)
Description

Use addPart0fSpeechDetails to add part-of-speech tags to documents.
The function supports English, Japanese, German, and Korean text.

updatedDocuments = addPartOfSpeechDetails(documents) detects parts of speech in
documents and updates the token details. The function, by default, retokenizes the text for part-of-
speech tagging. For example, the function splits the word "you're" into the tokens "you" and "'re". To
get the part-of-speech details from updatedDocuments, use tokenDetails.

updatedDocuments = addPartOfSpeechDetails(documents,Name,Value) specifies
additional options using one or more name-value pair arguments.

Tip Use addPartOfSpeechDetails before using the Lower, upper, erasePunctuation,
normalizeWords, removeWords, and removeStopWords functions as addPart0fSpeechDetails
uses information that is removed by these functions.

Examples

Add Part-of-Speech Details to Documents

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);
View the token details of the first few tokens.

tdetails = tokenDetails(documents);

head (tdetails)
Token DocumentNumber LineNumber Type Language
"fairest" 1 1 letters en
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"creatures" 1 1 letters en
"desire" 1 1 letters en
"increase" 1 1 letters en
"thereby" 1 1 letters en
"beautys" 1 1 letters en
"rose" 1 1 letters en
"might" 1 1 letters en

Add part-of-speech details to the documents using the addPart0fSpeechDetails function. This
function first adds sentence information to the documents, and then adds the part-of-speech tags to
the table returned by tokenDetails. View the updated token details of the first few tokens.

documents = addPartOfSpeechDetails(documents);
tdetails = tokenDetails(documents);

head(tdetails)

Token DocumentNumber SentenceNumber LineNumber Type Language Par
"fairest" 1 1 1 letters en adje
“creatures™ 1 1 1 letters en noun
"desire" 1 1 1 letters en noun
"increase" 1 1 1 letters en noun
"thereby" 1 1 1 letters en adve
"beautys" 1 1 1 letters en noun
“rose" 1 1 1 letters en noun
"might" 1 1 1 letters en auxi’

Get Part of Speech Details of Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
"ERITINA, BLT, "
"EDWNAT BEELD, "
"EIZEMNES, RLOTWLS, "
"EQEMNMESFELTWS, "
"BRETIZELC T, HFEL, "
"ELDERETHIFAEL, "
"FEEE3E3EBDS5B, "];
documents = tokenizedDocument(str);

For Japanese text, you can get the part-of-speech details using tokenDetails. For English text, you
must first use addPartOfSpeechDetails.

tdetails = tokenDetails(documents);

head(tdetails)
Token DocumentNumber LineNumber Type Language Part0fSpeech Lemma
"R 1 1 letters ja noun "R
iz 1 1 letters ja adposition iz
A" 1 1 letters ja verb R
o 1 1 punctuation ja punctuation o
"mELD" 1 1 letters ja verb "ELD
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o 1 1 punctuation ja punctuation
"R 2 1 letters ja noun
"m" 2 1 letters ja adposition

Get Part of Speech Details of German Text

Tokenize German text using tokenizedDocument.
str = [

"Guten Morgen. Wie geht es dir?"

"Heute wird ein guter Tag."];
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?

6 tokens: Heute wird ein guter Tag
To get the part of speech details for German text, first use addPart0fSpeechDetails.
documents = addPartOfSpeechDetails(documents);
To view the part of speech details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)
Token DocumentNumber SentenceNumber LineNumber Type Language
“Guten" 1 1 1 letters de
"Morgen" 1 1 1 letters de
o 1 1 1 punctuation de
"Wie" 1 2 1 letters de
"geht" 1 2 1 letters de
"es" 1 2 1 letters de
“dir" 1 2 1 letters de
e 1 2 1 punctuation de

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after

other arguments, but the order of the pairs does not matter.

2-25

Par

adje
nout
pun
adve
verl
prot
prot
pun



2 Functions

2-26

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DiscardKnownValues', true specifies to discard previously computed details and
recompute them.

RetokenizeMethod — Method to retokenize documents
'part-of-speech' (default) | 'none'

Method to retokenize documents, specified as one of the following:

* 'part-of-speech' - Transform the tokens for part-of-speech tagging. The function performs
these tasks:

* Split compound words. For example, split the compound word "wanna" into the tokens
"want" and "to". This includes compound words containing apostrophes. For example, the
function splits the word "don't" into the tokens "do" and "n't".

* Merge periods that do not end sentences with preceding tokens. For example, merge the

tokens "Mr" and "." into the token "Mr.".

* For German text, merge abbreviations that span multiple tokens. For example, merge the
tokens "z", ".", "B", and "." into the single token "z. B.".

* Merge runs of periods into ellipses. For example, merge three instances of " . " into the single
token "...".

* 'none' - Do not retokenize the documents.

Abbreviations — List of abbreviations
string array | character vector | cell array of character vectors | table

List of abbreviations for sentence detection, specified as a string array, character vector, cell array of
character vectors, or a table.

If the input documents do not contain sentence details, then the function first runs the
addSentenceDetails function and specifies the abbreviation list given by 'Abbreviations'. To
specify more options for sentence detection (for example, sentence starters) use the
addSentenceDetails function before using addPart0fSpeechDetails details.

If Abbreviations is a string array, character vector, or cell array of character vectors, then the
function treats these as regular abbreviations. If the next word is a capitalized sentence starter, then
the function breaks at the trailing period. The function ignores any differences in the letter case of
the abbreviations. Specify the sentence starters using the Starters name-value pair.

To specify different behaviors when splitting sentences at abbreviations, specify Abbreviations as
a table. The table must have variables named Abbreviation and Usage, where Abbreviation
contains the abbreviations, and Usage contains the type of each abbreviation. The following table
describes the possible values of Usage, and the behavior of the function when passed abbreviations
of these types.
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word is a number
and the following
word is a
capitalized
sentence starter,
then break at a
trailing period.

If the previous
word is a number
and the following
word is not
capitalized, then
do not break at a
trailing period.

If the previous
word is not a
number, then
break at a trailing
period.

30 in. The
width is 10
in."

Usage Behavior Example Example Text Detected
Abbreviation Sentences

regular If the next word is |"appt." "Book an appt. ["Book an
a capitalized We'll meet appt."
sentence starter, then."
then break at the "We'll meet
trailing period. then."
Otherwise, do not "Book an appt. |"Book an appt.
break at the today." today."
trailing period.

inner Do not break after |"Dr." "Dr. Smith." "Dr. Smith."
trailing period.

reference If the next token is |"fig." "See fig. 3." ["See fig. 3."
not a number, then " . " P

; Try a fig. Try a fig.

break at a trailing Th ez are d y d
period. If the next hice. "They are
token is a number, nice."
then do not break
at the trailing
period.

unit If the previous “in." "The height is ["The height is

30 in."

"The width is
10 in."

"The item is
10 in. wide."

"The item is
10 in. wide."

"Come in. Sit
down."

"Come in."

"Sit down."

The default value is the output of the abbreviations function. For Japanese and Korean text,
abbreviations do not usually impact sentence detection.

Tip By default, the function treats single letter abbreviations, such as "V.", or tokens with mixed
single letters and periods, such as "U.S.A." as regular abbreviations. You do not need to include these
abbreviations in Abbreviations.
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Data Types: char | string | table | cell

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

More About

Part-of-Speech Tags

The addPart0fSpeechDetails function adds part-of-speech tags to the table returned by the
tokenDetails function. The function tags each token with a categorical tag with one of the
following class names:

* adjective — Adjective

* adposition — Adposition

* adverb — Adverb

* auxiliary-verb — Auxiliary verb

* coord-conjunction — Coordinating conjunction
* determiner — Determiner

* interjection — Interjection

* noun — Noun

* numeral — Numeral

* particle — Particle

* pronoun — Pronoun

* proper-noun — Proper noun

* punctuation — Punctuation

* subord-conjunction — Subordinating conjucntion
* symbol — Symbol

* verb — Verb

* other — Other

Algorithms

If the input documents do not contain sentence details, then the function first runs
addSentenceDetails.
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Version History
Introduced in R2018b

See Also

tokenDetails | addDependencyDetails | addSentenceDetails | tokenizedDocument |
normalizeWords | addLanguageDetails | addTypeDetails | addLemmaDetails |
addEntityDetails

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

“Japanese Language Support”

“German Language Support”
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addSentenceDetails

Add sentence numbers to documents

Syntax

updatedDocuments = addSentenceDetails(documents)
updatedDocuments = addSentenceDetails(documents,Name,Value)
Description

Use addSentenceDetails to add sentence information to documents.
The function supports English, Japanese, German, and Korean text.

updatedDocuments = addSentenceDetails(documents) detects the sentence boundaries in
documents and updates the token details. To get the sentence details from updatedDocuments, use
tokenDetails.

updatedDocuments = addSentenceDetails(documents,Name,Value) specifies additional
options using one or more name-value pair arguments.

Tip Use addSentenceDetails before using the Lower, upper, erasePunctuation,
normalizeWords, removeWords, and removeStopWords functions as addSentenceDetails uses
information that is removed by these functions.

Examples

Add Sentence Details to Documents

Create a tokenized document array.

str = [

"This is an example document. It has two sentences."

"This document has one sentence."

"Here is another example document. It also has two sentences."];
documents = tokenizedDocument(str);

Add sentence details to the documents using addSentenceDetails. This function adds the sentence
numbers to the table returned by tokenDetails. View the updated token details of the first few
tokens.

documents = addSentenceDetails(documents);
tdetails = tokenDetails(documents);

head(tdetails)
Token DocumentNumber SentenceNumber LineNumber Type Language
"This" 1 1 1 letters en
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"is" 1 1 1 letters en
"an" 1 1 1 letters en
"example" 1 1 1 letters en
"document" 1 1 1 letters en
o 1 1 1 punctuation en
"It 1 2 1 letters en
"has" 1 2 1 letters en

View the token details of the second sentence of the third document.

idx = tdetails.DocumentNumber == 3 & ...
tdetails.SentenceNumber == 2;

tdetails(idx, :)

ans=6x6 table

Token DocumentNumber SentenceNumber LineNumber Type Language

"It" 3 2 1 letters en
"also" 3 2 1 letters en
"has" 3 2 1 letters en
"two" 3 2 1 letters en
"sentences" 3 2 1 letters en
o 3 2 1 punctuation en

Input Arguments

documents — Input documents

tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the

argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Abbreviations',["cm" "mm" "in"] specifies to detect sentences boundaries where
these abbreviations are followed by a period and a capitalized sentence starter.

Abbreviations — List of abbreviations
string array | character vector | cell array of character vectors | table

List of abbreviations, specified as a string array, character vector, cell array of character vectors, or a
table.

If Abbreviations is a string array, character vector, or cell array of character vectors, then the
function treats these as regular abbreviations. If the next word is a capitalized sentence starter, then
the function breaks at the trailing period. The function ignores any differences in the letter case of
the abbreviations. Specify the sentence starters using the Starters name-value pair.

To specify different behaviors when splitting sentences at abbreviations, specify Abbreviations as
a table. The table must have variables named Abbreviation and Usage, where Abbreviation
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contains the abbreviations, and Usage contains the type of each abbreviation. The following table
describes the possible values of Usage, and the behavior of the function when passed abbreviations

of these types.

word is a number
and the following
word is a
capitalized
sentence starter,
then break at a
trailing period.

If the previous
word is a number
and the following
word is not
capitalized, then
do not break at a
trailing period.

If the previous
word is not a
number, then
break at a trailing
period.

30 in. The
width is 10
in."

Usage Behavior Example Example Text Detected
Abbreviation Sentences

regular If the next word is |"appt." "Book an appt. ["Book an
a capitalized We'll meet appt."
sentence starter, then."
then break at the "We'll meet
trailing period. then."
Otherwise, do not "Book an appt. |"Book an appt.
break at the today." today."
trailing period.

inner Do not break after |"Dr." "Dr. Smith." "Dr. Smith."
trailing period.

reference If the next token is |"fig." "See fig. 3." |["See fig. 3."
not a number, then " . " P

5 Try a fig. Try a fig.

break at a trailing Th ez oe g y g
periOd. If the next nice." "They are
token is a number, nice."
then do not break
at the trailing
period.

unit If the previous "in." "The height is ["The height is

30 in."

"The width is
10 in."

"The item is
10 in. wide."

"The item is
10 in. wide."

"Come in. Sit
down."

"Come in."

"Sit down."

The default value is the output of the abbreviations function. For Japanese and Korean text,

abbreviations do not usually impact sentence detection.

2-32




addSentenceDetails

Tip By default, the function treats single letter abbreviations, such as "V.", or tokens with mixed
single letters and periods, such as "U.S.A." as regular abbreviations. You do not need to include these
abbreviations in Abbreviations.

Example: ["cm" "mm" "in"]

Data Types: char | string | table | cell

Starters — Words that start a sentence
string array | character vector | cell array of character vectors

Words that start a sentence, specified as a string array, character vector, or a cell array of character
vectors. If a sentence starter appears capitalized after a regular abbreviation, then the function
detects a sentence boundary at the trailing period. The function ignores any differences in the letter
case of the sentence starters.

The default value is the output of the stopWords function.

Data Types: char | string | cell

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

More About

Language Considerations

The addSentenceDetails function detects sentence boundaries based on punctuation characters
and line number information. For English and German text, the function also uses a list of
abbreviations passed to the function.

For other languages, you might need to specify your own list of abbreviations for sentence detection.
To do this, use the 'Abbreviations' option of addSentenceDetails.

Algorithms

If emoticons or emoji characters appear after a terminating punctuation character, then the function
splits the sentence after the emoticons and emaoji.
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Version History
Introduced in R2018a

See Also

tokenDetails | addDependencyDetails | addPartOfSpeechDetails | splitSentences |
abbreviations | tokenizedDocument | addLanguageDetails | addTypeDetails |
addLemmaDetails | addEntityDetails

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”
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addTypeDetails

Add token type details to documents

Syntax

updatedDocuments = addTypeDetails(documents)
updatedDocuments addTypeDetails(documents,Name,Value)

Description

updatedDocuments = addTypeDetails(documents) detects the token types in documents and
updates the token details. The function adds type details to the tokens with unknown type only. To get
the token types from updatedDocuments, use tokenDetails.

updatedDocuments = addTypeDetails(documents,Name,Value) specifies additional options
using one or more name-value pairs.

Tip Use addTypeDetails before using the Lower, upper, and erasePunctuation functions as
addTypeDetails uses information that is removed by these functions.

Examples

Add Token Type Details to Documents

Convert manually tokenized text into a tokenizedDocument object, setting the 'TokenizeMethod'
option to 'none’.

str = ["For" "more" "information" "," "see" "https://www.mathworks.com" "."];
documents = tokenizedDocument(str, 'TokenizeMethod', 'none')

documents =
tokenizedDocument:

7 tokens: For more information , see https://www.mathworks.com .

View the token details using the tokenDetails function.
tdetails = tokenDetails(documents)

tdetails=7x2 table

Token DocumentNumber
"For" 1
"more" 1
"information" 1
o 1
"see" 1

2-35



2 Functions

"https://www.mathworks.com" 1
II.II 1

If you set 'TokenizeMethod' to 'none’ in the call to the tokenizedDocument function, then it
does not detect the types of the tokens. To add the token type details, use the addTypeDetails
function.

documents = addTypeDetails(documents);
View the updated token details.
tdetails = tokenDetails(documents)

tdetails=7x3 table

Token DocumentNumber Type

"For" 1 letters
"more" 1 letters
"information" 1 letters
. 1 punctuation
"see" 1 letters
"https://www.mathworks.com" 1 web-address
o 1 punctuation

Input Arguments

documents — Input documents

tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the

argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'TopLevelDomains',["com" "net" "org"] specifies the top-level domains "com",
"net", and "org" for web address detection.

TopLevelDomains — Top-level domains
character vector | string array | cell array of character vectors

Top-level domains to use for web address detection, specified as a character vector, string array, or
cell array of character vectors.

If you do not specify TopLevelDomains, then the function uses the output of the topLevelDomains
function.

Example: ["com” "net" "org"]

Data Types: char | string | cell
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DiscardKnownValues — Option to discard previously computed details
false (default) | true
Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

Version History
Introduced in R2018b

See Also

tokenizedDocument | tokenDetails | addDependencyDetails | addSentenceDetails |
addPartOfSpeechDetails | splitSentences | abbreviations | topLevelDomains |
corpusLanguage | addLanguageDetails | addLemmaDetails | addEntityDetails

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
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Bag-of-n-grams model

Description

A bag-of-n-grams model records the number of times that each n-gram appears in each document of a
collection. An n-gram is a collection of n successive words.

bagOfNgrams does not split text into words. To create an array of tokenized documents, see
tokenizedDocument.

Creation

Syntax

bag = bag0fNgrams

bag = bag0fNgrams(documents)

bag = bagO0fNgrams( _ , 'NgramLengths',lengths)
bag = bag0fNgrams(uniqueNgrams, counts)
Description

bag = bag0fNgrams creates an empty bag-of-n-grams model.

bag bagOfNgrams (documents) creates a bag-of-n-grams model and counts the bigrams (pairs of
words) in documents.

bag = bagOfNgrams(  , 'NgramLengths', lengths) counts n-grams of the specified lengths
using any of the previous syntaxes.

bag = bag0fNgrams (uniqueNgrams, counts) creates a bag-of-n-grams model using the n-grams
in uniqueNgrams and the corresponding frequency counts in counts. If uniqueNgrams contains
<missing> values, then the corresponding values in counts are ignored.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

uniqueNgrams — Unique n-gram list
string array | cell array of character vectors

Unique n-gram list, specified as a NumNg rams-by-maxN string array or cell array of character vectors,
where NumNgrams is the number of unique n-grams, and maxN is the length of the largest n-gram.
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The value of uniqueNgrams (i, j) is the jth word of the ith n-gram. If the number of words in the
ith n-gram is less than maxN, then the remaining entries of the ith row of uniqueNgrams are empty.

If uniqueNgrams contains <missing>, then the function ignores the corresponding values in
counts.

Each n-gram must have at least one word.
EXaInple: [IIAnII nn ' ||An|| ||examp'Le|| ’ ||examp1e|| nn ]

Data Types: string | cell

counts — Frequency counts of n-grams
matrix of nonnegative integers

Frequency counts of n-grams corresponding to the rows of uniqueNgrams, specified as a matrix of
nonnegative integers. The value counts (i, j) corresponds to the number of times the n-gram
uniqueNgrams(j, :) appears in the ith document.

counts must have as many columns as uniqueNgrams has rows.

lengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.

Properties

Counts — N-gram counts per document
sparse matrix

N-gram counts per document, specified as a sparse matrix.

Ngrams — Unique n-grams in model
string array

Unique n-grams in the model, specified as a string array. Ngrams (i, j) is the jth word of the ith n-
gram. If the number of columns of Ngrams is greater than the number of words in the n-gram, then
the remaining entries are empty.

NgramLengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

NumNgrams — Number of n-grams seen
nonnegative integer

Number of n-grams seen, specified as a nonnegative integer.
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NumDocuments — Number of documents seen
nonnegative integer

Number of documents seen, specified as a nonnegative integer.

Object Functions

encode Encode documents as matrix of word or n-gram counts

tfidf Term Frequency-Inverse Document Frequency (tf-idf) matrix
topkngrams Most frequent n-grams

addDocument Add documents to bag-of-words or bag-of-n-grams model
removeDocument Remove documents from bag-of-words or bag-of-n-grams model

removeEmptyDocuments  Remove empty documents from tokenized document array, bag-of-words
model, or bag-of-n-grams model

removeNgrams Remove n-grams from bag-of-n-grams model

removelnfrequentNgrams Remove infrequently seen n-grams from bag-of-n-grams model

join Combine multiple bag-of-words or bag-of-n-grams models

wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams

model, or LDA model

Examples

Create Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);
documents(1:10)

ans =
10x1 tokenizedDocument:

70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time
71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair ti
71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair
68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial -
64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight
70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art bel

Create a bag-of-n-grams model.

bag bagO0fNgrams (documents)

bag =
bagOfNgrams with properties:
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Counts: [154x8799 doublel]
Vocabulary: ["fairest" "creatures" "desire" "increase"
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154

Visualize the model using a word cloud.

figure
wordcloud(bag);

say love thy mind

- thou knowst snat fnd thine eye
ty shew 0 thou shouldst hastthou  thou canst

O SWee]

Imfethﬂ'-lﬂh love thou  thoy hast thy worth
“thou mayst love thee sweetself

theerﬂake

mygass  thee th
swe;?ovey thou dOSt thy |0ve doth Iwe

love love

reuiovs- JOSE thou ’[h?eéﬂ%lf thou wilt ezt "

eye hean th ee thDU mine thine 0 let thou thy doth lie
N :‘a:."..',.._-= ‘th-éu Ehaltth O u a rt dear |D1'|"E-" ""f_:_:—:

time thou  mine thy DVE y tlhqgr:fdég;
o Y DEAUY MiNE EYE thy heart ovesu
thy fair vettw beauty thy _ love doth ~ mens eyes wilt thou hy sins

agamst ime mlne e}’es mlne OWH upon th‘j’thnu mine
"= true love thy sweet thineeyes we

truth beauty

ten times
yet love why dost ¥p;ﬁaagn myself thee
e back again doth give ove loves

Ty Carwand make love (Wel KNOWS

MISIress eyes

Count N-Grams of Different Lengths

"thereby"

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

"beautys"
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Create a bag-of-n-grams model. To count n-grams of length 2 and 3 (bigrams and trigrams), specify
"NgramLengths' to be the vector [2 3].

bag = bag0fNgrams(documents, 'NgramLengths',[2 3])

bag =
bagOfNgrams with properties:

Counts: [154x18022 double]
Vocabulary: [1x3092 string]
Ngrams: [18022x3 string]
NgramLengths: [2 3]
NumNgrams: 18022
NumDocuments: 154

View the 10 most common n-grams of length 2 (bigrams).
topkngrams(bag, 10, 'NGramLengths',2)

ans=10x3 table

Ngram Count NgramLength
"thou" "art" o 34 2
"mine" "eye" o 15 2
"thy" "self" o 14 2
"thou" "dost" o 13 2
"mine" "own" o 13 2
"thy" "sweet" o 12 2
"thy" "love" o 11 2
"dost" "thou" o 10 2
"thou" "wilt" o 10 2
"love" "thee" o 9 2

View the 10 most common n-grams of length 3 (trigrams).
topkngrams(bag, 10, 'NGramLengths',3)

ans=10x3 table

Ngram Count NgramLength
"thy" "sweet" "self" 4 3
"why" "dost" "thou" 4 3
"thy" "self" "thy" 3 3
"thou" "thy" "self" 3 3
"mine" "eye" "heart" 3 3
"thou" "shalt" "find" 3 3
"fair" "kind" "true" 3 3
"thou" "art" "fair" 2 3
"lTove" "thy" "self" 2 3
"thy" "self" "thou" 2 3
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Create Bag-of-N-Grams Model from Unique N-Grams and Counts

Create a bag-of-n-grams model using a string array of unique n-grams and a matrix of counts.

Load the example n-grams and counts from sonnetsBigramCounts.mat. This file contains a string
array uniqueNgrams, which contains the unique n-grams, and the matrix counts, which contains

the n-gram frequency counts.

load sonnetsBigramCounts.mat

View the first few n-grams in uniqueNgrams.

uniqueNgrams(1:10,:)

ans = 10x2 string

"fairest" "creatures"
"creatures" "desire"
"desire" "increase"
"increase" "thereby"
"thereby" "beautys"
"beautys" "rose"
"rose" "might"
"might" "never"
"never" "die"

"die" "riper"

Create the bag-of-n-grams model.

bag = bagOfNgrams(uniqueNgrams, counts)

bag =
bagOfNgrams with properties:

Counts: [154x8799 double]

Vocabulary: ["fairest" "creatures"

Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154

Version History
Introduced in R2018a

See Also

bagOfWords | addDocument | removeDocument | removeInfrequentNgrams | removeNgrams |
removeEmptyDocuments | topkngrams | encode | tfidf | tokenizedDocument

Topics
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”

“Analyze Text Data Using Multiword Phrases”

"increase"

"thereby"

"beautys"
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“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”
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bagOfWords

Bag-of-words model

Description

A bag-of-words model (also known as a term-frequency counter) records the number of times that
words appear in each document of a collection.

bagO0fWords does not split text into words. To create an array of tokenized documents, see
tokenizedDocument.

Creation

Syntax

bag
bag
bag

bagO0fWords
bagO0OfWords (documents)
bag0OfWords (uniqueWords, counts)

Description
bag = bag0fWords creates an empty bag-of-words model.

bag = bag0fWords(documents) counts the words appearing in documents and returns a bag-of-
words model.

bag = bagO0fWords (uniqueWords, counts) creates a bag-of-words model using the words in
uniqueWords and the corresponding frequency counts in counts.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

uniqueWords — Unique word list
string vector | cell array of character vectors

Unique word list, specified as a string vector or a cell array of character vectors. If uniqueWords
contains <missing>, then the function ignores the missing values. The size of uniqueWords must be
1-by-V where V is the number of columns of counts.

Example: ["an" "example" "list"]

Data Types: string | cell
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words corresponding to uniqueWords, specified as a matrix of nonnegative
integers. The value counts (i, j) corresponds to the number of times the word uniqueWords(j)
appears in the ith document.

counts must have numel (uniqueWords) columns.

Properties

Counts — Word counts per document

sparse matrix

Word counts per document, specified as a sparse matrix.

NumDocuments — Number of documents seen

nonnegative integer

Number of documents seen, specified as a nonnegative integer.

NumWords — Number of unique words in model

nonnegative integer

Number of unique words in the model, specified as a nonnegative integer.

Vocabulary — Unique words in model

string vector

Unique words in the model, specified as a string vector.

Data Types: string

Object Functions
encode

tfidf

topkwords

addDocument
removeDocument
removeEmptyDocuments

removeWords
removelnfrequentWords
join

wordcloud

Examples

Encode documents as matrix of word or n-gram counts

Term Frequency-Inverse Document Frequency (tf-idf) matrix

Most important words in bag-of-words model or LDA topic

Add documents to bag-of-words or bag-of-n-grams model

Remove documents from bag-of-words or bag-of-n-grams model
Remove empty documents from tokenized document array, bag-of-words
model, or bag-of-n-grams model

Remove selected words from documents or bag-of-words model
Remove words with low counts from bag-of-words model

Combine multiple bag-of-words or bag-of-n-grams models

Create word cloud chart from text, bag-of-words model, bag-of-n-grams
model, or LDA model

Create Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
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Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bag bagOfWords (documents)

bag =
bag0fWords with properties:

Counts: [154x3092 doublel
Vocabulary: ["fairest" "creatures" "desire" "increase" "thereby"
NumWords: 3092
NumDocuments: 154

View the top 10 words and their total counts.
tbl = topkwords(bag,10)

tb1l=10x2 table

Word Count
"thy" 281
"thou" 234
"Tove" 162
"thee" 161
"doth" 88
"mine" 63
"shall" 59
"eyes" 56
"sweet" 55
"time" 53

Create Bag-of-Words Model from Unique Words and Counts

Create a bag-of-words model using a string array of unique words and a matrix of word counts.

uniqueWords = ["a" "an" "another" "example" "final" "sentence" "third"];
counts = [

S o~-

iqueWords, counts)

bag =
bagOfWords with properties:
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Counts: [4x7 double]

Vocabulary: ["a" "an" "another" "example" "final" "sentence" "third"]
NumWords: 7
NumDocuments: 4

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file names
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the read function to be
extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn', readFcn);

Create an empty bag-of-words model.

bag = bag0fWords

bag =
bagOfWords with properties:
Counts: []
Vocabulary: [1x0 string]
NumWords: ©

NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and add the
document to bag.

while hasdata(fds)
str = read(fds);
document = tokenizedDocument(str);
bag = addDocument(bag,document);
end

View the updated bag-of-words model.
bag

bag =
bagOfWords with properties:

Counts: [4x276 double]
Vocabulary: ["From" "fairest" "creatures"
NumwWords: 276
NumDocuments: 4

we "desire" "increase" ,
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Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to removeWords.
Stop words are words such as "a", "the", and "in" which are commonly removed from text before

analysis.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"]);

bag = bagOfWords(documents);

newBag = removeWords(bag, stopWords)

newBag =
bagOfWords with properties:

Counts: [2x4 double]
Vocabulary: ["example" "short" "sentence
NumWords: 4
NumDocuments: 2

Most Frequent Words of Bag-of-Words Model

Create a table of the most frequent words of a bag-of-words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of

"second"]

Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-words model using bag0fWords.

bag bag0fWords (documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: ["fairest" "creatures" "desire
NumWords: 3092
NumDocuments: 154

Find the top five words.
T = topkwords(bag);
Find the top 20 words in the model.

k
T

20;
topkwords (bag, k)

"increase"

"thereby"

"beautys
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T=20x2 table

Word Count
"thy" 281
"thou" 234
"Tove" 162
"thee" 161
"doth" 88
"mine" 63
"shall" 59
"eyes" 56
"sweet" 55
"time" 53
"beauty" 52
"nor" 52
"art" 51
"yet" 51
"o" 50
"heart" 50

Create Tf-idf Matrix

Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0fWords.
bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: ["fairest" "creatures" "desire"
NumWords: 3092
NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10x10

"increase"

"thereby"

"beautys"
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3.6507 4.3438 2.7344 3.6507 4.3438 2.
.5287

0 0 0 0 0 4
0 0 0 0 0
0 0 0 0 0 2
0 0 0 0 0 2
0 0 0 0 0 2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 2
0 0 2.7344 0 0

Create Word Cloud from Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of

2644 3.2452

.2644
.2644
.2644

.2644

[cNoNoNoNoNoNoNoNo)

3.8918

[cNoNoNoNoNoNoNoNO]

Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-words model using bag0fWords.

bag bagO0fWords (documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: ["fairest" "creatures" "desire"
NumWords: 3092
NumDocuments: 154

Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);

"increase"

"thereby"

2.4720
0
0
0
0
0
0
0
0
0
"beautys"
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Create Bag-of-Words Model in Parallel

If your text data is contained in multiple files in a folder, then you can import the text data and create
a bag-of-words model in parallel using parfor. If you have Parallel Computing Toolbox™ installed,
then the parfor loop runs in parallel, otherwise, it runs in serial. Use join to combine an array of
bag-of-words models into one model.

Create a list of filenames. The examples sonnets have file names "exampleSonnetN. txt", where N is
the number of the sonnet.

filenames = [
"exampleSonnetl.txt"
"exampleSonnet2.txt"
"exampleSonnet3.txt"
"exampleSonnet4.txt"];

Create a bag-of-words model from a collection of files. Initialize an empty bag-of-words model and
then loop over the files and create a bag-of-words model for each file.

bag = bag0fWords;

numFiles = numel(filenames);

parfor i = l:numFiles
filename = filenames(i);

textData = extractFileText(filename);
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document = tokenizedDocument (textData);
bag(i) = bagO0fWords(document);
end

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 20 workers.

Combine the bag-of-words models using join.

bag join(bag)

bag =
bagOfWords with properties:

Counts: [4x276 double]
Vocabulary: ["From" "fairest" "creatures" "we" "desire" "increase"
NumWords: 276
NumDocuments: 4

Tips

» Ifyou intend to use a held out test set for your work, then partition your text data before using
bag0fWords. Otherwise, the bag-of-words model may bias your analysis.

Version History
Introduced in R2017b

See Also

bagOfNgrams | addDocument | removeDocument | removeInfrequentWords | removeWords |
removeEmptyDocuments | topkwords | encode | tfidf | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”
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bleuEvaluationScore

Evaluate translation or summarization with BLEU similarity score

Syntax

bleuEvaluationScore(candidate, references)
bleuEvaluationScore(candidate, references, Name=Value)

score
score

Description

The BiLingual Evaluation Understudy (BLEU) scoring algorithm evaluates the similarity between a
candidate document and a collection of reference documents. Use the BLEU score to evaluate the
quality of document translation and summarization models.

score = bleuEvaluationScore(candidate, references) returns the BLEU similarity score
between the specified candidate document and the reference documents. The function computes n-
gram overlaps between candidate and references for n-gram lengths one through four, with
equal weighting. For more information, see “BLEU Score” on page 2-57.

score = bleuEvaluationScore(candidate, references,Name=Value) specifies additional
options using one or more name-value arguments.

Examples

Evaluate Summary

Create an array of tokenized documents and extract a summary using the extractSummary function.

str = [
"The fox jumped over the dog."
"The fast brown fox jumped over the lazy dog."
"The lazy dog saw a fox jumping."
"There seem to be animals jumping other animals."
"There are quick animals and lazy animals"];
documents = tokenizedDocument(str);
summary = extractSummary(documents)

summary =
tokenizedDocument:

10 tokens: The fast brown fox jumped over the lazy dog .

Specify the reference documents as a tokenizedDocument array.

str = [
"The quick brown animal jumped over the lazy dog."
"The quick brown fox jumped over the lazy dog."];
references = tokenizedDocument(str);
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Calculate the BLEU score between the summary and the reference documents using the
bleuEvaluationScore function.

score = bleuEvaluationScore(summary, references)

score = 0.7825

This score indicates a fairly good similarity. A BLEU score close to one indicates strong similarity.

Specify N-Gram Weights

Create an array of tokenized documents and extract a summary using the ext ractSummary function.

str = [
"The fox jumped over the dog."
"The fast brown fox jumped over the lazy dog."
"The lazy dog saw a fox jumping."
"There seem to be animals jumping other animals."
"There are quick animals and lazy animals"];
documents = tokenizedDocument(str);
summary = extractSummary(documents)

summary =
tokenizedDocument:

10 tokens: The fast brown fox jumped over the lazy dog .

Specify the reference documents as a tokenizedDocument array.

str = [
"The quick brown animal jumped over the lazy dog."
"The quick brown fox jumped over the lazy dog."];
references = tokenizedDocument(str);

Calculate the BLEU score between the candidate document and the reference documents using the
default options. The bleuEvaluationScore function, by default, uses n-grams of length one
through four with equal weights.

score = bleuEvaluationScore(summary, references)

score = 0.7825

Given that the summary document differs only by one word to one of the reference documents, this
score might suggest a lower similarity than might be expected. This behavior is due to the function
using n-grams which are too large for the short document length.

To address this, use shorter n-grams by setting the 'NgramWeights' option to a shorter vector.
Calculate the BLEU score again using only unigrams and bigrams by setting the 'NgramWeights'
option to a two-element vector. Treat unigrams and bigrams equally by specifying equal weights.

score = bleuEvaluationScore(summary, references, 'NgramwWeights',[0.5 0.5])

score = 0.8367

This score suggests a better similarity than before.
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Input Arguments

candidate — Candidate document
tokenizedDocument scalar | string array | cell array of character vectors

Candidate document, specified as a tokenizedDocument scalar, a string array, or a cell array of
character vectors. If candidate is not a tokenizedDocument scalar, then it must be a row vector
representing a single document, where each element is a word.

references — Reference documents
tokenizedDocument array | string array | cell array of character vectors

Reference documents, specified as a tokenizedDocument array, a string array, or a cell array of
character vectors. If references is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To evaluate against multiple
reference documents, use a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: bleuEvaluationScore(candidate, references,IgnoreCase=true) evaluate the
BLEU similarity score ignoring case

NgramWeights — N-gram weights
[0.25 0.25 0.25 0.25] (default) | row vector of finite nonnegative values

N-gram weights, specified as a row vector of finite nonnegative values, where NgramwWeights (i)

corresponds to the weight for n-grams of length i. The length of the weight vector determines the
range of n-gram lengths to use for the BLEU score evaluation. The function normalizes the n-gram
weights to sum to one.

Tip If the number of words in candidate is smaller than the number of elements in ngramWeights,
then the resulting BLEU score is zero. To ensure that bleuEvaluationScore returns nonzero
scores for very short documents, set ngramWeights to a vector with fewer elements than the
number of words in candidate.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

IgnoreCase — Option to ignore case
0 (false) (default) | 1 (true)

Option to ignore case, specified as one of these values:

* 0 (false) - use case-sensitive comparisons between candidates and references.
* 1 (true) - compare candidates and references ignoring case.
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Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
logical

Output Arguments

score — BLEU score
scalar

BLEU score, returned as a scalar value in the range [0,1] or NaN.

A BLEU score close to zero indicates poor similarity between candidate and references. A BLEU
score close to one indicates strong similarity. If candidate is identical to one of the reference
documents, then scoreis 1. If candidate and references are both empty documents, then score
is NaN. For more information, see “BLEU Score” on page 2-57.

Tip If the number of words in candidate is smaller than the number of elements in ngramWeights,
then the resulting BLEU score is zero. To ensure that bleuEvaluationScore returns nonzero
scores for very short documents, set ngramWeights to a vector with fewer elements than the
number of words in candidate.

Algorithms
BLEU Score

The BiLingual Evaluation Understudy (BLEU) scoring algorithm [1] evaluates the similarity between a
candidate document and a collection of reference documents. Use the BLEU score to evaluate the
quality of document translation and summarization models.

To compute the BLEU score, the algorithm uses n-gram counts, clipped n-gram counts, modified n-
gram precision scores, and a brevity penalty.

The clipped n-gram counts function Countgjyp, if necessary, truncates the n-gram count for each n-

gram so that it does not exceed the largest count observed in any single reference for that n-gram.
The clipped counts function is given by

Countchp(n-gram) = min(Count(n-gram), MaxRefCount(n-gram)),

where Count(n-gram) denotes the n-gram counts and MaxRefCount(n-gram) is the largest n-gram
count observed in a single reference document for that n-gram.

The modified n-gram precision scores are given by

Countjjp(n-gram)
_ C € {Candidates} n-gram € C
Count(n-gram’) ’
C’ € {Candidates} n-gram’ € C’

Pn

where n corresponds to the n-gram length and {candidates} is the set of sentences in the candidate
documents.

Given a vector of n-gram weights w, the BLEU score is given by
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N -
E wplogpy

n=1

bleuScore = BP - exp

’

where N is the largest n-gram length, the entries in p correspond to the geometric averages of the
modified n-gram precisions, and BP is the brevity penalty given by

1 ife>r
BP = .
el-cifcsr

where c is the length of the candidate document and r is the length of the reference document with
length closest to the candidate length.

Version History
Introduced in R2020a

References

[1] Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. "BLEU: A Method for Automatic
Evaluation of Machine Translation." In Proceedings of the 40th annual meeting on association
for computational linguistics, pp. 311-318. Association for Computational Linguistics, 2002.

See Also

tokenizedDocument | rougeEvaluationScore | bm25Similarity | cosineSimilarity |
textrankScores | lexrankScores | mmrScores | extractSummary

Topics
“Sequence-to-Sequence Translation Using Attention”
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bm25Similarity

Document similarities with BM25 algorithm

Syntax

similarities = bm25Similarity(documents)
similarities = bm25Similarity(documents,queries)
similarities = bm25Similarity(bag)

similarities = bm25Similarity(bag,queries)
similarities = bm25Similarity( _ ,Name,Value)
Description

Use bm25Similarity to calculate document similarities.

By default, this function calculates BM25 similarities. To calculate BM11, BM15, or BM25+
similarities, use the 'DocumentlLengthScaling' and 'DocumentLengthCorrection' arguments.

similarities = bm25Similarity(documents) returns the pairwise BM25 similarities between
the specified documents. The score in similarities (i, j) represents the similarity between
documents (i) and documents(j).

similarities = bm25Similarity(documents,queries) returns similarities between
documents and queries. The score in similarities(i, j) represents the similarity between
documents(i) and queries(j).

similarities = bm25Similarity(bag) returns similarities between the documents encoded by
the specified bag-of-words or bag-of-n-grams model. The score in similarities(i, j) represents
the similarity between the ith and jth documents encoded by bag.

similarities = bm25Similarity(bag, queries) returns similarities between the documents
encoded by the bag-of-words or bag-of-n-grams model bag and the documents specified by queries.
The score in similarities (i, j) represents the similarity between the ith document encoded by
bag and queries(j).

similarities = bm25Similarity( ,Name, Value) specifies additional options using one or
more name-value pair arguments. For instance, to use the BM25+ algorithm, set the
'DocumentLengthCorrection’' option to a nonzero value.

Examples

Similarity Between Documents

Create an array of tokenized documents.

textData = [
"the quick brown fox jumped over the lazy dog"

2-59



2 Functions

2-60

"the fast brown fox jumped over the lazy dog"

"the lazy dog sat there and did nothing"

"the other animals sat there watching"];
documents = tokenizedDocument (textData)

documents =
4x1 tokenizedDocument:

9 tokens: the quick brown fox jumped over the lazy dog
9 tokens: the fast brown fox jumped over the lazy dog
8 tokens: the lazy dog sat there and did nothing

6 tokens: the other animals sat there watching

Calculate the similarities between them using the bm25Similarity function. The output is a sparse
matrix.

similarities = bm25Similarity(documents);

Visualize the similarities of the documents in a heat map.

figure
heatmap(similarities);
xlabel("Document")
ylabel("Document")
title("BM25 Similarities")
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The first three documents have the highest pairwise similarities which indicates that these
documents are most similar. The last document has comparatively low pairwise similarities with the
other documents which indicates that this document is less like the other documents.

Similarity to Query
Create an array of input documents.

str = [
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
"the dog sat there and did nothing"
"the other animals sat there watching"];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

9 tokens: the quick brown fox jumped over the lazy dog
8 tokens: the fast fox jumped over the lazy dog

7 tokens: the dog sat there and did nothing

6 tokens: the other animals sat there watching

Create an array of query documents.

str = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"];

queries = tokenizedDocument(str)

queries =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

Calculate the similarities between input documents and query documents using the
bm25Similarity function. The output is a sparse matrix. The score in similarities(i,j)
represents the similarity between documents (i) and queries(j).

similarities = bm25Similarity(documents,queries);
Visualize the similarities of the documents in a heat map.
figure

heatmap(similarities);

xlabel("Query Document")

ylabel("Input Document")
title("BM25 Similarities")

2-61



2 Functions

2-62

BM25 Similarities
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In this case, the first input document is most like the first query document.
Document Similarities Using Bag-of-Words Model
Create a bag-of-words model from the text data in sonnets.csv.
filename = "sonnets.csv";
tbl = readtable(filename, 'TextType', 'string');
textData = tbl.Sonnet;
documents = tokenizedDocument(textData);
bag = bagOfWords(documents)
bag =
bagOfWords with properties:
Counts: [154x3527 double]
Vocabulary: ["From" "fairest" "creatures" "we" "desire"

NumWords: 3527
NumDocuments: 154

"increase"

Calculate similarities between the sonnets using the bm25Similarity function. The output is a

sparse matrix.

similarities = bm25Similarity(bag);
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Visualize the similarities between the first five documents in a heat map.

figure
heatmap(similarities(1:5,1:5));
xlabel("Document")
ylabel("Document")

title("BM25 Similarities")
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Evaluate BM25+ Document Similarity

The BM25+ algorithm addresses a limitation of the BM25 algorithm: the component of the term-
frequency normalization by document length is not properly lower bounded. As a result of this
limitation, long documents which do not match the query term can often be scored unfairly by BM25
as having a similar relevance to shorter documents that do not contain the query term.

BM25+ addresses this limitation by using a document length correction factor (the value of the
'DocumentlLengthScaling' name-value pair). This factor prevents the algorithm from over-
penalizing long documents.

Create two arrays of tokenized documents.

textDatal = [
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
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"the dog sat there and did nothing"
"the other animals sat there watching"];
documentsl = tokenizedDocument(textDatal)

documentsl =
4x1 tokenizedDocument:

9 tokens: the quick brown fox jumped over the lazy dog
8 tokens: the fast fox jumped over the lazy dog

7 tokens: the dog sat there and did nothing

6 tokens: the other animals sat there watching

textData2 = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"l];
documents2 = tokenizedDocument(textData2)

documents2 =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

To calculate the BM25+ document similarities, use the bm25Similarity function and set the
'DocumentLengthCorrection' option to a nonzero value. In this case, set the
'DocumentLengthCorrection' option to 1.

similarities = bm25Similarity(documentsl,documents2, 'DocumentLengthCorrection',1);
Visualize the similarities of the documents in a heat map.

figure
heatmap(similarities);
xlabel("Query")
ylabel("Document")
title("BM25+ Similarities")
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Here, when compared with the example “Similarity Between Documents” on page 2-59, the scores
show more similarity between the input documents and the first query document.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bag0fWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0OfNgrams
object. If bag is a bag0fNgrams object, then the function treats each n-gram as a single word.

queries — Set of query documents
tokenizedDocument array | bag0OfWords object | bagOfNgrams object | string array of words | cell
array of character vectors

Set of query documents, specified as one of the following:
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* A tokenizedDocument array
* A bagOfWords or bag0OfNgrams object
* A 1-by-N string array representing a single document, where each element is a word

* A 1-by-N cell array of character vectors representing a single document, where each element is a
word

To compute term frequency and inverse document frequency statistics, the function encodes
queries using a bag-of-words model. The model it uses depends on the syntax you call it with. If
your syntax specifies the input argument documents, then it uses bag0fWords (documents). If
your syntax specifies bag, then it uses bag.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: bm25Similarity(documents, 'TFScaling',1.5) returns the pairwise similarities for
the specified documents and sets the token frequency scaling factor to 1.5.

IDFWeight — Method to compute inverse document frequency factor
"textrank' (default) | 'classic-bm25' | "'normal’ | "unary' | 'smooth' | "max"' |
"probabilistic’

Method to compute inverse document frequency factor, specified as the comma-separated pair
consisting of ' IDFWeight' and one of the following:

+ 'textrank' - Use TextRank IDF weighting [2]. For each term, set the IDF factor to

* T1og((N-NT+0.5)/(NT+0.5)) if the term occurs in more than half of the documents, where N
is the number of documents in the input data and NT is the number of documents in the input
data containing each term.

* IDFCorrection*avglIDF if the term occurs in half of the documents or f, where avgIDF is the
average IDF of all tokens.

* ‘'classic-bm25"' - For each term, set the IDF factor to Log( (N-NT+0.5)/(NT+0.5)).
* 'normal’' - For each term, set the IDF factor to Log (N/NT).

* ‘'unary' - For each term, set the IDF factor to 1.

* 'smooth' - For each term, set the IDF factor to Log (1+N/NT).

* 'max' - For each term, set the IDF factor to Log(1+max (NT)/NT).

* 'probabilistic' - For each term, set the IDF factor to Log( (N-NT)/NT).

where N is the number of documents in the input data and NT is the number of documents in the input
data containing each term.

TFScaling — Term frequency scaling factor
1.2 (default) | nonnegative scalar

Term frequency scaling factor, specified as the comma-separated pair consisting of ' TFScaling' and
a nonnegative scalar.
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This option corresponds to the value k in the BM25 algorithm. For more information, see “BM25” on
page 2-68.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

DocumentLengthScaling — Document length scaling factor
0.75 (default) | scalar in the range [0,1]

Document length scaling factor, specified as the comma-separated pair consisting of
'DocumentLengthScaling' and a scalar in the range [0,1].

This option corresponds to the value b in the BM25 algorithm. When b=1, the BM25 algorithm is
equivalent to BM11. When b=0, the BM25 algorithm is equivalent to BM15. For more information,
see “BM11” on page 2-69, “BM15” on page 2-69, or “BM25” on page 2-68.

Data Types: double

IDFCorrection — Inverse document frequency correction factor
0.25 (default) | nonnegative scalar

Inverse document frequency correction factor, specified as the comma-separated pair consisting of
"IDFCorrection' and a nonnegative scalar.

This option only applies when 'IDFWeight' is 'textrank'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

DocumentLengthCorrection — Document length correction factor
0 (default) | nonnegative scalar

Document length correction factor, specified as the comma-separated pair consisting of
'DocumentLengthCorrection' and a nonnegative scalar.

This option corresponds to the value 6 in the BM25+ algorithm. If the document length correction
factor is nonzero, then the bm25Similarity function uses the BM25+ algorithm. Otherwise, the
function uses the BM25 algorithm. For more information, see “BM25+” on page 2-68.

Data Types: double

Output Arguments

similarities — BM25 similarity scores
sparse matrix

BM?25 similarity scores, returned as a sparse matrix:

* Given a single array of tokenized documents, similarities is a N-by-N nonsymmetric matrix,
where similarities(i,j) represents the similarity between documents (i) and
documents(j), and N is the number of input documents.

* Given an array of tokenized documents and a set of query documents, similarities is an N1-by-
N2 matrix, where similarities(i, j) represents the similarity between documents (i) and
the jth query document, and N1 and N2 represents the number of documents in documents and
gueries, respectively.

* Given a single bag-of-words or bag-of-n-grams model, similarities is a bag.NumDocuments-
by-bag.NumDocuments nonsymmetric matrix, where similarities(i,j) represents the
similarity between the ith and jth documents encoded by bag.
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* Given a bag-of-words or bag-of-n-grams models and a set of query documents, similaritiesisa
bag.NumDocuments-by-N2 matrix, where similarities(i, j) represents the similarity
between the ith document encoded by bag and the jth document in queries, and N2
corresponds to the number of documents in queries.

Tips

* The BM25 algorithm aggregates and uses information from all the documents in the input data via
the term frequency (TF) and inverse document frequency (IDF) based options. This behavior
means that the same pair of documents can yield different BM25 similarity scores when the
function is given different collections of documents.

* The BM25 algorithm can output different scores when comparing documents to themselves. This
behavior is due to the use of the IDF weights and the document length in the BM25 algorithm.

Algorithms
BM25
Given a document from a collection of documents D, and a query document, the BM25 score is given

by

BM25(document, query; D) = >
word€ query

IDF(word;D

8 Count(word, document)(k + 1)
) Y]
Count(word, document) + k(l -b+ bwocunﬂ)

where

* Count(word,document) denotes the frequency of word in document.
* 1 denotes the average document length in D.

* k denotes the term frequency scaling factor (the value of the ' TFScaling' name-value pair
argument). This factor dampens the influence of frequently appearing terms on the BM25 score.

* b denotes the document length scaling factor (the value of the 'DocumentLengthScaling'
name-value pair argument). This factor controls how the length of a document influences the
BM25 score. When b=1, the BM25 algorithm is equivalent to BM11. When b=0, the BM25
algorithm is equivalent to BM15.

+ IDF(word, D) is the inverse document frequency of the specified word given the collection of
documents D.

BM25+

The BM25+ algorithm addresses a limitation of the BM25 algorithm: the component of the term-
frequency normalization by document length is not properly lower bounded. As a result of this
limitation, long documents which do not match the query term can often be scored unfairly by BM25
as having a similar relevance to shorter documents that do not contain the query term.

The BM25+ algorithm is the same as the BM25 algorithm with one extra parameter. Given a
document from a collection of documents D and a query document, the BM25+ score is given by
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BM25" (document, query; D) = > IDF(word;D
word€ query
Count(word, document)(k + 1) +6

’

Count(word, document) + k(l -b+ bw)

where the extra parameter 6 denotes the document length correction factor (the value of the
'DocumentlLengthScaling' name-value pair). This factor prevents the algorithm from over-
penalizing long documents.

BM11
BM11 is a special case of “BM25” on page 2-68 when b=1.

Given a document from a collection of documents D, and a query document, the BM11 score is given
by

BM11(document, query; D) = E
word€ query

IDF(word;D)

Count(word, document)(k + 1)
Count(word, document) + k(w)

BM15
BM15 is a special case of “BM25” on page 2-68 when b=0.

Given a document from a collection of documents D, and a query document, the BM15 score is given
by

, Count(word, document)(k + 1)
’~ Count(word, document) + k

BM15(document, query; D) = > (IDF(word;D
word€ query

Version History
Introduced in R2020a
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characterCategories

Package: textanalytics.unicode

Unicode character categories

Syntax

ucats = characterCategories(str32)
ucats = characterCategories(str32, 'Granularity',granularity)

Description

ucats = characterCategories(str32) returns the major Unicode character categories for the
characters in the UTF32 object str.

ucats = characterCategories(str32, 'Granularity',granularity) also specifies the
granularity of the returned categories. For example,

characterCategories(str32, 'Granularity', 'detailed"') returns detailed Unicode
character categories.

Examples

Get Unicode Character Categories

Convert the string "Hello! [ to its Unicode UTF-32 string representation using the
textanalytics.unicode.UTF32 function.

str = "Hello! [J[;
str32 textanalytics.unicode.UTF32(str)

str32 =
UTF32 with properties:

Data: [72 101 108 108 111 33 32 128512]

Get the Unicode character categories of str32 using the characterCategories function.

ucats characterCategories(str32)

ucats Ix1 cell array
{I[L L L L L P Z S1}

The Unicode character categories "L", "P", "Z", and "S" correspond to "letter", "punctuation",
"separator", and "symbol", respectively.
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Get Detailed Unicode Character Categories

Convert the string "Hello! [[7to its Unicode UTF-32 string representation using the
textanalytics.unicode.UTF32 function.

str = "Hello! [[;
str32 = textanalytics.unicode.UTF32(str)

str32 =
UTF32 with properties:

Data: [72 101 108 168 111 33 32 128512]

Get the Unicode character categories of str32 using the characterCategories function. To return
detailed Unicode character categories, set the 'Granularity' optionto 'detailed’.

ucats characterCategories(str32, 'Granularity', 'detailed")

ucats = 1Ix1 cell array
{[Lu L1 Ll L1 Ll Po Zs So]l}

The Unicode character categories "Lu", "L1", "Po", "Zs", and "So" correspond to "uppercase letter",
"lowercase letter", "other punctuation”, "space separator"”, and "other symbol", respectively.

Input Arguments

str32 — UTF-32 string representation
UTF32 array

UTF-32 string representation, specified as a UTF32 array.

granularity — Granularity of returned Unicode character categories
'major' (default) | 'detailed'’

Granularity of returned Unicode character categories, specified as one of the following:

* 'major' - Return the major Unicode character category. This includes the first character of the
Unicode character category only.

« ‘'detailed' - Return detailed Unicode character codes. This includes all characters of the
Unicode character category.

Output Arguments

ucats — Unicode character categories
cell array of categorical vectors

Unicode character categories, returned as a cell array of categorical vectors.
This table shows the major and detailed Unicode character categories. To specify which granularity of

Unicode character categories to return, use the Granularity option.
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Major Character

Major Character

Detailed Character

Detailed Character

Category Category Description |Category Category Description
L Letter Lu Uppercase letter
Ll Lowercase letter
Lt Titlecase letter
Lm Modifier letter
Lo Other letter
M Mark Mn Nonspacing mark
Mc Spacing mark
Me Enclosing mark
N Number Nd Decimal number
N1 Letter number
No Other number
12 Punctuation Pc Connector punctuation
Pd Dash punctuation
Ps Open punctuation
Pe Close punctuation
Pi Initial punctuation
Pf Final punctuation
Po Other punctuation
S Symbol Sm Math symbol
Sc Currency symbol
Sk Modifier symbol
So Other symbol
Z Separator Zs Space separator
yA! Line separator
Zp Paragraph separator
C Other Cc Control
Cf Format
Cs Surrogate
Co Private use
Cn Unassigned

Version History

Introduced in R2021a
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References

[1] Unicode® Standard Annex #44 Unicode Character Database https://www.unicode.org/reports/
tra4/

See Also

tokenizedDocument | textanalytics.unicode.nfc | textanalytics.unicode.nfd |
textanalytics.unicode.nfkc | textanalytics.unicode.nfkd |
textanalytics.unicode.UTF32 | hex

Topics

“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Language Considerations”
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Check if pattern is substring in documents

Syntax

tf
tf

contains(documents, pat)
contains(documents,pat,IgnoreCase=flag)

Description

tf = contains(documents,pat) returns 1 where any token of documents contains pat and
returns 0 otherwise.

tf = contains(documents,pat, IgnoreCase=flag) also specifies whether to ignore letter case
when checking substrings.

Tip Use the contains function to check substrings of the words in documents by specitying
substrings or patterns. To check entire words and n-grams in documents, use the containsWords
and containsNgrams functions respectively.

Examples

Check for Substring in Documents

Create an array of tokenized documents.

documents = tokenizedDocument([
"an example of a short sentence”
"a second short sentence"]);

Check for matches of the string "short".
tf = contains(documents, "short")

tf = 2x1 logical array

Check for matches of the string "ex".
tf = contains(documents, "ex")

tf

2x1 logical array

=
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

pat — Substring or pattern to check
string array | character vector | cell array of character vectors | pattern array

Substring or pattern to check, specified as one of these values:

* String array

* Character vector

* Cell array of character vectors
* patternarray

If pat contains multiple substrings or patterns, then the function returns 1 if any matching
substrings or patterns appear in the corresponding document.

flag — Option to ignore case
0 (false) (default) | 1 (true)

Option to ignore case, specified as one of the these values:

* 0 (false) - Treat candidate matches that differ only by letter case as nonmatching.
* 1 (true) - Treat candidate matches that differ only by letter case as matching.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical

Version History
Introduced in R2022b

See Also
containsNgrams | containsWords | tokenizedDocument | removeWords | removeStopwWords |
normalizeWords | replaceWords | doclength | context | replace

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
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Check if n-gram is member of documents

Syntax

tf
tf

containsNgrams (documents,ngrams)
containsNgrams (documents,ngrams,IgnoreCase=flag)

Description

tf = containsNgrams(documents,ngrams) returns 1 where any n-gram of documents matches
ngrams and returns 0 otherwise.

tf = containsNgrams(documents,ngrams,IgnoreCase=flag) also specifies whether to ignore
letter case when checking n-grams.

Examples

Check if N-Gram Is Member of Document

Create an array of tokenized documents.
documents = tokenizedDocument ([

"an example of a short sentence”
"a second short sentence"]);

Check for documents containing the n-gram ["a" "short"].

tf

containsNgrams (documents,["a" "short"])

tf

2x1 logical array

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

ngrams — N-grams to check
string array | character vector | cell array of character vectors | pattern array

N-grams to check, specified as one of the these values:
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* String array

* Character vector

* Cell array of character vectors
* pattern array

If ngrams is a string array, cell array, or pattern array, then it has size numNgrams-by-maxN, where
numNgrams is the number of n-grams and maxN is the length of the largest n-gram. If ngrams is a
character vector, then it represents a single word (unigram).

The value of ngrams (i, j) corresponds to the jth word of the ith n-gram. If the number of words in
the ith n-gram is less than maxN, then the remaining entries of the ith row of ngrams must be
empty.

If ngrams contains multiple n-grams or patterns, then the function returns 1 where any of the n-
grams appear in the corresponding document.

Example: ["An" ""; "An example"; "example" ""]

Data Types: string | char | cell

flag — Option to ignore case
0 (false) (default) | 1 (true)

Option to ignore case, specified as one of the these values:

* 0 (false) - Treat candidate matches that differ only by letter case as nonmatching.
* 1 (true) - Treat candidate matches that differ only by letter case as matching.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical

Version History
Introduced in R2022a

See Also
contains | containsWords | tokenizedDocument | removeNgrams | replaceNgrams | context
| bag0OfNgrams

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
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Check if word is member of documents

Syntax

tf
tf

containsWords (documents,words)
containsWords (documents,words,IgnoreCase=flag)

Description

tf = containsWords(documents,words) returns 1 where any token of documents matches
words and returns 0 otherwise.

tf = containsWords(documents,words,IgnoreCase=flag) also specifies whether to ignore
letter case when checking words.

Examples

Check if Word Is Member of Document

Create an array of tokenized documents.
documents = tokenizedDocument([

"an example of a short sentence”
"a second short sentence"]);

Check for documents containing the word "second".

tf

containsWords (documents, "second")

tf

2x1 logical array

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Words to check
string array | character vector | cell array of character vectors | pattern array

Words to check, specified as one of these values:
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* String array

* Character vector

* Cell array of character vectors
* pattern array

If words contains multiple words, then the function returns 1 where any of the words appear in the
corresponding document.

flag — Option to ignore case
0 (false) (default) | 1 (true)

Option to ignore case, specified as one of the these values:

* 0 (false) - Treat candidate matches that differ only by letter case as nonmatching.
* 1 (true) - Treat candidate matches that differ only by letter case as matching.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Version History
Introduced in R2022b

See Also
contains | containsNgrams | tokenizedDocument | removeWords | removeStopWords |
normalizeWords | replaceWords | doclength | context | replace

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
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Search documents for word or n-gram occurrences in context

Syntax

T = context(documents,word)

T = context(documents,ngram)

T = context(_ _ ,contextLength)
T = context(___ ,Name,Value)
Description

T = context(documents,word) searches for occurrences of a single word in documents and
returns a table showing word in context and its locations. The function, by default, is case sensitive.

T = context(documents,ngram) searches for occurrences of an n-gram in documents. The
function, by default, is case sensitive.

T = context( ,contextLength) specifies the length of the context to return using any of the
previous syntaxes.

T = context( ,Name, Value) specifies additional options using one or more name-value pair
arguments using any of the previous syntaxes.

Examples

Search Documents for Word Occurrences

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument (textData);

Search for the word "life".

tbl = context(documents,"life");

head(tbl)
Context Document Word
"consumst thy self single life ah thou issueless shalt " 9 10
"ainted counterfeit lines life life repair times pencil" 16 35
"d counterfeit lines life life repair times pencil pupi” 16 36
" heaven knows tomb hides life shows half parts write b" 17 14



context

"he eyes long lives gives
"tender embassy love thee
"ves beauty though lovers
"s shorn away live second

life
life
life
life

View the occurrences in a string array.

tbl.

ans

Context

= 23x1 string

"consumst thy self single
"ainted counterfeit lines
"d counterfeit lines life
" heaven knows tomb hides
"he eyes long lives gives
"tender embassy love thee
"ves beauty though lovers
"s shorn away live second
"e rehearse let love even
"st bail shall carry away
"art thou hast lost dregs
" thoughts food
"tten name hence immortal
" beauty mute others give
"ve life bring tomb lives
" steal thyself away term
"fe thou art assured mine
" fear worst wrongs least
"anst vex inconstant mind
" fame faster time wastes
"ess harmful deeds better
"ate hate away threw savd
" many nymphs vowd chaste

life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life

thee "
made four two alone sink"
beauty shall black lines"
second head ere beautys "

ah thou issueless shalt "
life repair times pencil"
repair times pencil pupi"
shows half parts write b"
thee "
made four two alone sink"
beauty shall black lines"
second head ere beautys "
decay lest wise world lo"
hath line interest memor"
prey worms body dead cow"
sweetseasond showers gro"
shall though once gone w"
bring tomb lives life fa"
fair eyes poets praise d"
thou art assured mine 1i"
longer thy love stay dep"
hath end better state be"
thy revolt doth lie o ha"
thou preventst scythe cr"
provide public means pub"
saying "
keep came tripping maide"

Search Documents for N-Gram Occurrences

18
45
63

69
23
50
27

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of

Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.

Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
= extractFileText(filename);

str

textData =
documents =

split(str,newline);

Search for the bigram "dost thou".

ngram = ["dost" "thou"l;
tbl = context(documents,ngram);
head (tbl)

tokenizedDocument (textData);

Context

Document

Word
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"unthrifty loveliness why dost thou spend upon thy self thy " 4 4
"ee beauteous niggard why dost thou abuse bounteous largess " 4 25
"ve profitless usurer why dost thou great sum sums yet canst" 4 35
"eavy eyelids weary night dost thou desire slumbers broken s" 61 10
" sweet lovely dost thou make shame like canker f" 95 3
"hy budding name o sweets dost thou thy sins enclose tongue " 95 19
"ruth beauty love depends dost thou therein dignified make a" 101 16
" thou blind fool love dost thou mine eyes behold know be" 137 5

5
26
36
11

20
17
6

View the occurrences in a string array.
tbl.Context

ans = 10x1 string

"unthrifty loveliness why dost thou spend upon thy self thy

"ee beauteous niggard why dost thou abuse bounteous largess

"ve profitless usurer why dost thou great sum sums yet canst"
"eavy eyelids weary night dost thou desire slumbers broken s"
" sweet lovely dost thou make shame like canker f"
"hy budding name o sweets dost thou thy sins enclose tongue "
"ruth beauty love depends dost thou therein dignified make a"
" thou blind fool love dost thou mine eyes behold know be"
"h rebel powers array why dost thou pine suffer dearth paint"
"y large cost short lease dost thou upon thy fading mansion "

Specify Context Length

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Search for the word "life" and return each occurrence with a 15-character context before and after.

tbl = context(documents,"life",15);

head (tbl)

Context Document Word
"hy self single life ah thou issuel" 9 10
"nterfeit lines life life repair ti" 16 35
"eit lines life life repair times p" 16 36
"ows tomb hides life shows half par" 17 14
"ng lives gives life thee ! 18 69
"assy love thee life made four two " 45 23
" though lovers life beauty shall b" 63 50
"ay live second life second head er" 68 27

View the occurrences in a string array.
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tbl.Context

ans = 23x1 string
"hy self single life ah thou issuel"
"nterfeit lines life life repair ti"
"eit lines life life repair times p"
"ows tomb hides life shows half par"
"ng lives gives life thee !
"assy love thee life made four two "
" though lovers life beauty shall b"
"ay live second life second head er"
" let love even life decay lest wis"
"all carry away life hath line inte"
"ast lost dregs life prey worms bod"
" thoughts food life sweetseasond s"
"hence immortal life shall though o"
"te others give life bring tomb liv"
"ing tomb lives life fair eyes poet"
"self away term life thou art assur"
"t assured mine life longer thy lov"
"t wrongs least life hath end bette"
"nconstant mind life thy revolt dot"
"er time wastes life thou preventst"
"l deeds better life provide public"
"way threw savd life saying !
"hs vowd chaste life keep came trip"

Specify Source Text
Specify source text to display context.

Load the sonnets.txt data and split it into separate documents.

txt = extractFileText("sonnets.txt");
paragraphs = split(txt, [newline newline]);

Extract the sonnets from paragraphs. The first sonnet is the fifth element of paragraphs, and the
remaining sonnets appear in every second element afterward.

sonnets = paragraphs(5:2:end);
documents = tokenizedDocument(sonnets);

Normalize the text, then search for the word "life".

documentsNormalized = normalizeWords(documents);
T = context(documentsNormalized,"life")

T=23%x3 table

Context Document Word
"sum'st thy self in singl life ? ah ! if thou issueless” 9 18
" : so should the line of life that life repair , which" 16 73
"ld the line of life that life repair , which thi , tim" 16 75
"s a tomb which hide your life , and show not half your" 17 34
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" live thi , and thi give
"ssi of love to thee , my
"eauti , though my lover'
" awai , to live a second
"t your love even with my
"shall carri me awai , my
"ast but lost the dreg of
"to my thought as food to
"ur name from henc immort
", when other would give
"a tomb . there live more
"yself awai , for term of

Since the words are normalized, the contexts may not be easy to read. To view the contexts using the

life to thee . !
life , be made of four , with"
life : hi beauti shall in the"
life on second head ; er beau"
life decai ; lest the wise wo"
life hath in thi line some in"
life , the prei of worm , my "
life , or as sweet-season'd s"
life shall have , though i , "
life , and bring a tomb . the"
life in on of your fair ey th"
life thou art assur mine ; an"

original text data, specify the source text using the 'Source' option.

T = context(documentsNormalized,"life", 'Source',sonnets)

T=23x3 table

18
45
63

71
74
74
75
81
83

92

128
53
100

118
18
83
10
42

108

118
13

Context Document Word

"um'st thy self in single life? Ah! if thou issueless s" 9 18
": So should the lines of life that life repair, Which " 16 73
"d the lines of life that life repair, Which this, Time" 16 75
" a tomb Which hides your life, and shows not half your" 17 34
"ves this, and this gives life to thee. ! 18 128
"assy of love to thee, My life, being made of four, wit" 45 53
"eauty, though my lover's life: His beauty shall in the" 63 100
"n away, To live a second life on second head; Ere beau" 68 59
"t your love even with my life decay; Lest the wise wor" 71 118
" shall carry me away, My life hath in this line some i" 74 18
"st but lost the dregs of life, The prey of worms, my b" 74 83
"o my thoughts as food to life, Or as sweet-season'd sh" 75 10
"name from hence immortal life shall have, Though I, on" 81 42
", When others would give life, and bring a tomb. There" 83 108
"a tomb. There lives more life in one of your fair eyes" 83 118
life thou art assured mine; A" 92 13

"hyself away, For term of

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

word — Word to find

string scalar | character vector | scalar cell array

Word to find in context, specified as a string scalar, character vector, or scalar cell array containing a

character vector.

Data Types: char | string | cell
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ngram — N-gram to find
string array | cell array of character vectors

N-gram to find in context, specified as a string array or cell array of character vectors.

ngram has size 1-by-N , where N is the number of words in the n-gram. The value of ngram(j) is the
jth word of the n-gram.

The function ignores trailing empty strings in ngram.

Data Types: string | cell

contextLength — Context length
25 (default) | positive integer

Context length, specified as a positive integer.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Solver', 'avb' specifies to use approximate variational Bayes as the solver.

Source — Source text
string array | cell array of character vectors

Source text, specified as the comma-separated pair consisting of 'Source' and a string array or a
cell array of character vectors. If the input documents are preprocessed, and you have the source
text, then you can use this option to make the output more readable.

The source text must be the same size as documents.

IgnoreCase — Option to ignore case
false (default) | true

Option to ignore case, specified as the comma-separated pair consisting of ' IgnoreCase' and one of
the following:

+ false - search for occurrences that match the word or n-gram exactly.
* true - search for occurrences that match the word or n-gram ignoring case.
Output Arguments

T — Table of contexts
table

Table of contexts with these columns:

Context String containing the queried word or n-gram in context

Document Numeric index of the document containing the word or n-gram
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|W0 rd |Numeric indices of the word or n-gram in the document

Version History
Introduced in R2017b

See Also
doclength | doc2cell | joinWords | string | tokenizedDocument | containsWords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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correctSpelling

Correct spelling of words

Syntax
updatedDocuments = correctSpelling(documents)

updatedWords = correctSpelling(words)

updatedWords = correctSpelling(words, 'Language', language)
[ ,unknownWords] = correctSpelling( )

= correctSpelling(_ _ ,Name,Value)

Description

Use correctSpelling to correct spelling of words in string arrays or documents.
The function supports English, German, and Korean text.

updatedDocuments = correctSpelling(documents) corrects the spelling of the words in the
tokenizedDocument array documents.

updatedWords = correctSpelling(words) corrects the spelling of the words in the string
vector words.

updatedWords = correctSpelling(words, 'Language', language) also specifies the
language of the words in the string vector words.

[ ,unknownWords] = correctSpelling( ) also returns a vector of words in the input
that were not found in the dictionary and for which no suggestion was found.

= correctSpelling( _ ,Name,Value) specifies additional options using one or more

name-value pair arguments.

Examples

Correct Spelling of Words in Documents

Create a tokenized document array.
str = [
"A documnent containing some misspelled worrds."

"Another documnent cntaining typos."];
documents = tokenizedDocument(str);

Correct the spelling of the words in the documents using the correctSpelling function.
updatedDocuments = correctSpelling(documents)

updatedDocuments =
2x1 tokenizedDocument:
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7 tokens: A document containing some misspelled words
5 tokens: Another document containing typos

Correct Spelling of Words in String Array

Create a string array of words.

words = ["A" "strng" "array containing" "misspelled" "worrds" "."];

Correct the spelling of the words in the string array using the correctSpelling function.
updatedWords = correctSpelling(words)

updatedWords = 1Ix7 string
"A" "string" "array" "containing" "misspelled"” "words"

Specify Known Words

Create a tokenized document array.
str = [
"Analyze text data using MATLAB."

"Another documnent cntaining typos."];
documents = tokenizedDocument(str);

Correct the spelling of the words in the documents using the correctSpelling function.

updatedDocuments = correctSpelling(documents)

updatedDocuments =
2x1 tokenizedDocument:

7 tokens: Analyze text data using MAT LAB .
5 tokens: Another document containing typos

Notice that the word "MATLAB" gets split into the two words "MAT" and "LAB".

Correct the spelling of the documents and specify "MATLAB" as a known word using the
"KnownWords ' option.

updatedDocuments = correctSpelling(documents, 'KnownWords', "MATLAB")

updatedDocuments =
2x1 tokenizedDocument:

6 tokens: Analyze text data using MATLAB .
5 tokens: Another document containing typos
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

language — Word language

1 en 1 | ] de 1 | ] ko 1

Word language, specified as one of the following:
* 'en' - English language

* 'de' - German language

* 'ko' - Korean language

If you do not specify language, then the software detects the language automatically.

Data Types: char | string
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: correctSpelling(documents, 'KnownWords"', ["MathWorks" "MATLAB"]) corrects
the spelling of the words in documents and treats the words "MathWorks" and "MATLAB" as
correctly spelled words.

KnownWords — Words to be treated as correct
[ 1 (default) | string array | cell array of character vectors

Words to be treated as correct, specified as the comma-separated pair consisting of 'KnownWords'
and a string array or a cell array of character vectors.

If you specify a list of known words, then these words remain unchanged when the function corrects
spelling. The software may also substitute misspelled words with words from the list of known words.

Example: ["MathWorks" "MATLAB"]
Data Types: char | string | cell

ExtensionDictionary — Hunspell extension dictionary file
"' (default) | file path
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Hunspell extension dictionary file (also known as personal dictionary file), specified as the comma-
separated pair consisting of 'ExtensionDictionary' and a file path of a Hunspell extension
dictionary file.

A Hunspell extension dictionary file is a . dic file containing the number of words in the dictionary
followed by a list of the words in the following format:

wordl/affixWordl
word2/affixWord2

wordN/affixWordN
*forbiddenWordl
*forbiddenWord?2

*forbiddenWordM
where:

* wordl, word2, ..., wordN is a list words to extend the Hunspell dictionary with.

« affixWordl, affixWord2, ..., affixWordN (optional) indicate words in the Hunspell dictionary
that share affixes. Indicate affixes by concatenating them to the corresponding word with a
forward slash (/). For example, the entry exxxtreme/extreme indicates that affixes that apply to
the word "extreme" also apply to the custom word "exxxtreme".

+ forbiddenWordl, forbiddenWord2, ..., forbiddenWordN is a list of forbidden words to use for
spelling correction. Indicate forbidden words using an asterisk (*).

The entries in the Hunspell extension dictionary file can appear in any order. When you specify words
in a Hunspell dictionary file, you must specify words in their base form. For example, to ensure that
the correctSpelling function does not convert the string "decrese" to "decrees" using an
extension dictionary, specify the base word "decree" as a forbidden word.

For example, to create a Hunspell extension dictionary file specifying:

* The words "MathWorks", "MATLAB", and "exxxtreme".
* The affixes that apply to the word "extreme" also apply to the word "exxxtreme".
* The word "NaN" is a forbidden word.

use:

MathWorks

MATLAB
exxxtreme/extreme
*NaN

For an example showing how to create Hunspell extension dictionary files, see “Create Extension
Dictionary for Spelling Correction”. For more information about the options of Hunspell dictionary
files, see https://manpages.ubuntu.com/manpages/trusty/en/man4/hunspell.4.html.

Data Types: char | string

Dictionary — Hunspell dictionary file
"' (default) | file path

Hunspell dictionary file, specified as the comma-separated pair consisting of 'Dictionary' and a
file path of a Hunspell dictionary file.
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A Hunspell dictionary file is a . dic file containing the number of words in the dictionary followed by
a list of the words in the following format:

N
wordl/flagsl
word2/flags2

wordN/flagsN

where N is the number of words in the dictionary file, wordl, word2, ..., wordN are the N words in the
dictionary, and flagsl, ..., flagsN specify optional flags corresponding to the words word1l, word2,
..., wordN, respectively. Use flags to specify word attributes, for example affixes. To specify a
Hunspell affix file, use the 'Affixes' option.

For example, a to create a Hunspell dictionary file containing the 4 words "MathWorks", "MATLAB",
"correctSpelling", and "tokenizedDocument", use:

4

MathWorks

MATLAB
correctSpelling
tokenizedDocument

For more information about the options of Hunspell dictionary files, see https://
manpages.ubuntu.com/manpages/trusty/en/man4/hunspell.4.html.

Data Types: char | string

Affixes — Hunspell affix file
"' (default) | file path

Hunspell affix file, specified as the comma-separated pair consisting of 'Affixes' and a file path of
a Hunspell affix file.

A Hunspell affix file is a . aff file containing the number of words in the dictionary followed by a list
of the words in the following format:

optionl valuesl
option2 values2

optionM valuesM

where M is the number of options in the affix file, optionl, option2, ..., optionM are the M options,
and valuesl, ..., valuesN specify the values corresponding to the options optionl, option2, ...,
optionM, respectively. Use these options to specify affixes.

Prefixes
To define a prefix rule, use the PFX option with the format:

PFX flag crossProduct K
PFX flag strippingl prefixl conditionl

PFX flag strippingK prefixK conditionK

where the values:
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flag corresponds to the flags used in the Hunspell dictionary file.
crossProduct indicates whether prefixes and suffixes can be mixed, specified as Y or N.
K is the number of prefixes defined for the specified flag.

strippingl, stripping2, ..., strippingK indicate characters to be stripped from the word
when applying prefix. If the stripping value is 0, then no stripping takes place.

prefixl, prefix2, ..., prefixK specify the prefixes to use.

conditionl, condition2, ..., conditionK specify the optional conditions for which to apply the
prefixes prefixl, prefix2, ..., prefixK, respectively. For the trivial condition, specify ".".

Suffixes

To define a suffix rule, use the SFX option with the format:

SFX flag crossProduct K
SFX flag strippingl suffixl conditionl

SFX flag strippingK suffixK conditionK

where suffixl, suffix2, ..., suffixK specify the prefixes to use, and the flag, cross product, K,
stripping, and condition values are the same as the prefix format.

Example

Create a Hunspell affix file defining the following affix rules:

Flag A:

* prefix words with "re"
Flag B:

* suffix words not ending with "y" with "ed".
* suffix words ending with "y" with "ied", removing "y".

use the Hunspell affix file:

PFX AY 1
PFX A O re .
SFX B Y 1
SFX B 0 ed ["y]
SFX B y ied y

To use these flags in a Hunspell dictionary file, append the appropriate flags to the words using the
"/". For each word, you can specify multiple flags. For example, to specify a dictionary file
containing:

The words "ptest" and "ptry".
For the word "ptest" only, also include the prefix "re" using flag A.
For both words, also include the suffixes "ed" or "ied" where appropriate using flag B

For more information about the options of Hunspell affix files, see https://manpages.ubuntu.com/
manpages/trusty/en/man4/hunspell.4.html.

Data Types: char | string
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RetokenizeMethod — Method to retokenize documents
‘split' (default) | 'none’

Method to retokenize documents, specified as the comma-separated pair consisting of
'RetokenizeMethod' and one of the following:

* 'split' - Correct spelling by splitting tokens. For example, split the incorrectly spelled token
"twowords" into the correctly spelled tokens "two" and "words".

* 'none' - Do not split tokens for spelling correction.

Output Arguments

updatedDocuments — Corrected documents
tokenizedDocument array

Corrected documents, returned as a tokenizedDocument array. If the 'RetokenizeMethod'
option is 'split’, then the number of words in each updated document may be different to the
corresponding input document.

If there are multiple candidates for corrected words, then the function automatically selects a single
word for correction.

updatedWords — Corrected words
string vector

Corrected words, returned as a string vector. If the 'RetokenizeMethod' optionis 'split’, then
the number of updated words may be different the number of input words.

If there are multiple candidates for corrected words, then the function automatically selects a single
word for correction.

unknownWords — Unknown words
string vector

Unknown words, returned as a string vector. The string vector unknownWords contains the input
words that are not in the spelling correction dictionary and for which no suggestions are found.

Version History
Introduced in R2020a

See Also
editDistanceSearcher | editDistance | tokenizedDocument

Topics

“Correct Spelling in Documents”

“Create Extension Dictionary for Spelling Correction”

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”
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Detect language of text

Syntax

language = corpusLanguage(str)

Description
Use corpusLanguage to detect language of text.
The function supports English, Japanese, German, and Korean text.

language = corpusLanguage(str) detects the language of the text in str.

Examples

Detect Language of Text

Detect the language of a string array of text.
str = [
"BONAHT FLL, "
"EQEMNEBEEELTLS, "];
language = corpuslLanguage(str)

language =
1 ja 1
Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

language — Detected language
'en' | 'ja'| 'de' | 'ko'

Detected language, returned as one of the following:

* 'en' - Detected English text
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* 'ja' - Detected Japanese text
« 'de' - Detected German text
* 'ko' - Detected Korean text

Version History
Introduced in R2018b

See Also

tokenizedDocument | tokenDetails | addSentenceDetails | addPartOfSpeechDetails |
splitSentences | abbreviations | topLevelDomains | addLanguageDetails |
addLemmaDetails

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Language Considerations”

“Japanese Language Support”

“German Language Support”
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Document similarities with cosine similarity

Syntax

similarities = cosineSimilarity(documents)
similarities = cosineSimilarity(documents,queries)

similarities = cosineSimilarity(bag)
similarities = cosineSimilarity(bag,queries)

similarities = cosineSimilarity(M)
similarities = cosineSimilarity(M1,M2)

Description

similarities = cosineSimilarity(documents) returns the pairwise cosine similarities for the
specified documents using the tf-idf matrix derived from their word counts. The score in
similarities(i,j) represents the similarity between documents (i) and documents(j).

similarities = cosineSimilarity(documents,queries) returns similarities between
documents and queries using tf-idf matrices derived from the word counts in documents. The
score in similarities (i, j) represents the similarity between documents (i) and queries(j).

similarities = cosineSimilarity(bag) returns pairwise similarities for the documents
encoded by the specified bag-of-words or bag-of-n-grams model using the tf-idf matrix derived from
the word counts in bag. The score in similarities (i, j) represents the similarity between the ith
and jth documents encoded by bag.

similarities = cosineSimilarity(bag,queries) returns similarities between the documents
encoded by the bag-of-words or bag-of-n-grams model bag and queries using tf-idf matrices derived
from the word counts in bag. The score in similarities(i, j) represents the similarity between
the ith document encoded by bag and queries(j).

similarities = cosineSimilarity (M) returns similarities for the data encoded in the row
vectors of the matrix M. The score in similarities(i, j) represents the similarity between M(1i, :)
and M(j,:).

similarities = cosineSimilarity(M1,M2) returns similarities between the documents
encoded in the matrices M1 and M2. The score in similarities (i, j) corresponds to the similarity
between M1(i,:) and M2(j,:).

Examples

Similarity Between Documents

Create an array of tokenized documents.

textData = [
"the quick brown fox jumped over the lazy dog"
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"the fast brown fox jumped over the lazy dog"

"the lazy dog sat there and did nothing"

"the other animals sat there watching"];
documents = tokenizedDocument (textData)

documents =
4x1 tokenizedDocument:

9 tokens: the quick brown fox jumped over the lazy dog
9 tokens: the fast brown fox jumped over the lazy dog
8 tokens: the lazy dog sat there and did nothing

6 tokens: the other animals sat there watching

Calculate the similarities between them using the cosineSimilarity function. The output is a
sparse matrix.

similarities = cosineSimilarity(documents);

Visualize the similarities between the documents in a heat map.

figure
heatmap(similarities);
xlabel("Document")
ylabel("Document")
title("Cosine Similarities")

Cosine Similarities

Document

Document

Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.
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Similarity to Query
Create an array of input documents.

str = [
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
"the dog sat there and did nothing"
"the other animals sat there watching"];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

tokens: the quick brown fox jumped over the lazy dog
tokens: the fast fox jumped over the lazy dog
tokens: the dog sat there and did nothing

tokens: the other animals sat there watching

o N 00w

Create an array of query documents.

str = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"l];
queries = tokenizedDocument(str)

queries =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

Calculate the similarities between input and query documents using the cosineSimilarity
function. The output is a sparse matrix.

similarities = cosineSimilarity(documents,queries);

Visualize the similarities of the documents in a heat map.

figure
heatmap(similarities);
xlabel("Query Document")
ylabel("Input Document")
title("Cosine Similarities")
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Cosine Similarities
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Query Document

Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.

Document Similarities Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";

tbl = readtable(filename, 'TextType', 'string');

textData = tbl.Sonnet;

documents = tokenizedDocument (textData);

bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3527 double]
Vocabulary: ["From" "fairest"

NumWords: 3527
NumDocuments: 154

"creatures"

we 1]

"desire"

"increase"

Calculate similarities between the sonnets using the cosineSimilarity function. The output is a

sparse matrix.

similarities = cosineSimilarity(bag);

Visualize the similarities of the first five documents in a heat map.

figure
heatmap(similarities(1:5,1:5));
xlabel("Document")
ylabel("Document")
title("Cosine Similarities")
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Cosine Similarities

0.06994 0.05645 0.0154
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Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.

Similarities Within Word Count Matrix

06

105

104

103

102

101

For bag-of-words input, the cosineSimilarity function calculates the cosine similarity using the tf-
idf matrix derived from the model. To compute the cosine similarities on the word count vectors
directly, input the word counts to the cosineSimilarity function as a matrix.

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";

tbl = readtable(filename, 'TextType', 'string');
textData = tbl.Sonnet;

documents = tokenizedDocument(textData);

bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3527 double]
Vocabulary: ["From" "fairest" "creatures" "we"
NumWords: 3527
NumDocuments: 154

"desire"

"increase"
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Get the matrix of word counts from the model.

M = bag.Counts;

Calculate the cosine document similarities of the word count matrix using the cosineSimilarity
function. The output is a sparse matrix.

similarities = cosineSimilarity(M);

Visualize the similarities of the first five documents in a heat map.

figure
heatmap(similarities(1:5,1:5));
xlabel("Document")
ylabel("Document")
title("Cosine Similarities")

Cosine Similarities

09

08

Document

1 2 3 4 5
Document

Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
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representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagO0fWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.

queries — Set of query documents
tokenizedDocument array | string array of words | cell array of character vectors

Set of query documents, specified as one of the following:

* A tokenizedDocument array
* A 1-by-N string array representing a single document, where each element is a word

* A 1-by-N cell array of character vectors representing a single document, where each element is a
word

To compute term frequency and inverse document frequency statistics, the function encodes
queries using a bag-of-words model. The model it uses depends on the syntax you call it with. If
your syntax specifies the input argument documents, then it uses bag0fWords (documents). If
your syntax specifies bag, then the function encodes queries using bag then uses the resulting tf-idf
matrix.

M — Input data
matrix

Input data, specified as a matrix. For example, M can be a matrix of word or n-gram counts or a tf-idf
matrix.

Data Types: double

Output Arguments

similarities — Cosine similarity scores
sparse matrix

Cosine similarity scores, returned as a sparse matrix:

* Given a single array of tokenized documents, similarities is a N-by-N symmetric matrix, where
similarities(i, j) represents the similarity between documents(i) and documents(j), and
N is the number of input documents.

* Given an array of tokenized documents and a set of query documents, similarities is an N1-by-
N2 matrix, where similarities(i, j) represents the similarity between documents (i) and
the jth query document, and N1 and N2 represents the number of documents in documents and
gueries, respectively.

* Given a single bag-of-words or bag-of-n-grams model, similarities is a bag.NumDocuments-
by-bag.NumDocuments symmetric matrix, where similarities(i, j) represents the similarity
between the ith and jth documents encoded by bag.

* Given a bag-of-words or bag-of-n-grams models and a set of query documents, similaritiesisa
bag.NumDocuments-by-N2 matrix, where similarities(i, j) represents the similarity
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between the ith document encoded by bag and the jth document in queries, and N2
corresponds to the number of documents in queries.

* Given a single matrix, similaritiesisa size(M,1)-by-size(M, 1) symmetric matrix, where
similarities(i, j) represents the similarity between M(1i,:) and M(j,:).

* Given two matrices, similaritiesisan size(M1,1)-by-size(M2,1) matrix, where
similarities(i,j) represents the similarity between M1(i,:) and M2(j,:).

Version History
Introduced in R2020a

See Also

tokenizedDocument | bleuEvaluationScore | rougeEvaluationScore | bm25Similarity |
textrankScores | lexrankScores | mmrScores | extractSummary

Topics
“Sequence-to-Sequence Translation Using Attention”
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decodeHTMLENntities

Convert HTML and XML entities into characters

Syntax

newStr = decodeHTMLEntities(str)

Description

newStr = decodeHTMLEntities(str) replaces HTML and XML character entities and numeric
character references in the elements of str with their Unicode equivalent.

Examples

Replace HTML Entities with Unicode

Replace HTML character entities with their Unicode equivalent.

str = ["&lt;&gt;" "R&amp;D"];
newStr = decodeHTMLEntities(str)

newStr = Ix2 string
II<>II IIR&DII

Replace HTML numeric character references with their Unicode equivalent. Unicode character with
hex code &#x20 is a space.

str = "R&#x20;D";
newStr = decodeHTMLEntities(str)

newStr =
IIR DII

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors
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Output text, returned as a string array, character vector, or cell array of character vectors. str and
newStr have the same data type.

Version History
Introduced in R2017b

See Also
eraseTags | eraseURLs | erasePunctuation | Llower | upper | tokenizedDocument
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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DependencyChart Properties

Grammatical dependency chart

Description

DependencyChart properties control the appearance and behavior of a DependencyChart object.
By changing property values, you can modify certain aspects of the dependency chart.

To create a DependencyChart object, use sentenceChart.

Properties
Color and Styling

Orientation — Display orientation of sentence
"horizontal" (default) | "vertical"

Display orientation of the sentence, specified as one of these values:

* "horizontal" — Display the tokens horizontally with the tree reading from top to bottom.
* "vertical" — Display the tokens vertically with the tree reading from left to right.

LineWidth — Dependency line width
0.5 (default) | positive scalar

Dependency line width in points, specified as a positive scalar. One point equals 1/72 inch.

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

Note If you do not specify LeaderLineWidth, then the function automatically sets
LeaderLineWidth to the value of LineWidth. To change the dependency line width only, set
LeaderLineWidth to 0.5.

LineColor — Dependency line color
[0 0 O] (default) | RGB triplet | string scalar | character vector

Dependency line color, specified as an RGB triplet or as a string scalar or character vector containing
a color name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.
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Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name [Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FF0000" —

"green" "g" [0 1 0] "#OOFFOO"

"blue" "b" [0 0 1] "#0O0OOFF" I

"cyan" "c" [0 1 1] "#OOFFFF"

"magenta" “m" [1 0 1] "#FFOOFF" [ ]

"yellow" "y [1 1 0] "#FFFFOO"

"black" "K" [0 0 O] "#000000" ——

"white" "w' [111] "#FFFFFF" —

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2FBE" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

LineStyle — Dependency line style

" (default) | " - -

Dependency line style, specified as one of the options in this table.

- n I llnonell

Line Style

Description

Resulting Line

Solid line

Dashed line

Dotted line

Dash-dotted line

Ilnonell

No line

LeaderLineWidth — Leader line width
LineWidth (default) | positive scalar

Leader line width in points, specified as a positive scalar. One point equals 1/72 inch.
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The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeaderLineColor — Leader line color
[0 0 O] (default) | RGB triplet | string scalar | character vector

Leader line color, specified as an RGB triplet or as a string scalar or character vector containing a
color name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FF0000" —

"green" "g" [0 1 0] "#0OFF00"

"blue" "b" [0 0 1] "#OOOOFF" ——

"cyan" "c" [0 11] "#OOFFFF"

"magenta" |"m" [1 0 1] "#FFOOFF" —

"yellow" fy" [1 1 0] "#FFFFOO"

"black" "K" [0 0 0] "#000000" E—

"white" fw" [111] "#FFFFFF" —

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2F8E" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

LeaderLineStyle — Leader line style
II:II (default)| II_II | II__II | II_.II | Ilnonell

Leader line style, specified as one of the options in this table.
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Line Style

Description

Resulting Line

Solid line

Dashed line

Dotted line

Dash-dotted line

"none"

No line

No line

FontName — Token and label font name
"Helvetica" (default) | string scalar | character vector

Token and label font name, specified as a supported font name. For labels to display and print
properly, you must choose a font that your system supports. The default font depends on the specific
operating system and locale. For example, Windows® and Linux® systems in English localization use
the Helvetica font by default.

Data Types: char | string

FontSize — Token font size
10 (default) | positive scalar

Token font size in points, specified as a positive scalar. One point equals 1/72 inch.

Note If you do not specify the LabelFontSize option, then the function automatically sets the
LabelFontSize option to 0.8*LineWidth. To change the token font size only, set the
LabelFontSize option to 8.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

LabelFontSize — Label font size
0.8*FontSize (default) | positive scalar

Label font size in points, specified as a positive scalar. One point equals 1/72 inch.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

FontAngle — Token character slant
"normal" (default) | "italic"

Token character slant, specified as "normal" or "italic".

Some fonts do not have both font styles. For these fonts, the italic slant looks the same as the normal
font.

FontUnits — Token font size units
"points" (default) | "inches" | "centimeters" | "normalized" | "pixels"

Token font size units, specified as one of the values in this table.
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Units Description

"points" Points. One point equals 1/72 inch.

"inches" Inches.

"centimeters" Centimeters.

"normalized" Interpret font size as a fraction of the axes plot

box height. If you resize the axes, the font size
modifies accordingly. For example, if FontSize is
0.1 in normalized units, then the text is 1/10 the
plot box height.

"pixels” Pixels.

Distances in pixels are independent of your
system resolution on Windows and Macintosh
systems:

* On Windows systems, a pixel is 1/96 inch.
* On Macintosh systems, a pixel is 1/72 inch.

On Linux systems, your system resolution
determines the size of a pixel.

Note If you set the font size and the font units in one function call, you must set the FontUnits
property first so that the axes correctly interprets the specified font size.

FontWeight — Token character thickness
"normal” (default) | "bold"

Token character thickness, specified as "normal" or "bold".
MATLAB uses the FontWeight property to select a font from those available on your system. Some
fonts do not have a bold weight. For these fonts, the bold font weight looks the same as the normal

font.

LabelFontAngle — Label character slant
"italic" (default) | "normal™

Label character slant, specified as "italic" or "normal".

Some fonts do not have both font styles. For these fonts, the italic slant looks the same as the normal
font.

LabelFontWeight — Label character thickness
"normal” (default) | "bold"

Label character thickness, specified as "normal" or "bold".
MATLAB uses the FontWeight property to select a font from those available on your system. Some

fonts do not have a bold weight. For these fonts, the bold font weight looks the same as the normal
font.
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Data

Token — Sentence tokens

string vector | cell array of character vectors

Sentence tokens, specified as a string vector or a cell array of character vectors.
Data Types: string | cell

Head — Token dependency heads
vector of nonnegative integers

Token dependency heads, specified as a vector of nonnegative integers, where Head (1) is the index
of the head token of Token (i) and Head (1) is 0 for the root token.

The dependency structure of Head must encode a tree.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Dependency — Token dependency types
categorical vector | string vector | cell array of character vectors

Token dependency types, specified as a categorical vector, string vector, or cell array of character
vectors.

Data Types: string | cell | categorical
Position

HandleVisibility — Visibility of object handle
"on" (default) | "off" | "callback"

Visibility of the object handle in the Children property of the parent, specified as one of these
values:

* "on" — Object handle is always visible.

+ "off" — Object handle is invisible at all times. Use this option to prevent unintended changes to
the UI by another function. Set HandleVisibility to "off" to temporarily hide the handle
when you execute another function.

* "callback" — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command-line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. These
functions include get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to "on" to list all
object handles regardless of their HandleVisibility property setting.

InnerPosition — Inner size and location
[0 0 1 1] (default) | four-element vector

Inner size and location, specified as a four-element vector of the form [left bottom width
height]. This property is equivalent to the Position property.
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Note Setting this property has no effect when the parent container is a TiledChartLayout object.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions
object

Layout options, specified as a TiledChartLayoutOptions or GridLayoutOptions object. Use this
property when the dependency chart object is in a tiled chart layout or a grid layout.

To position the axes within the grid of a tiled chart layout, set the Tile and TileSpan properties of
the TiledChartLayoutOptions object. For example, consider a 3-by-3 tiled chart layout. The
layout has a grid of tiles in the center and four tiles along the outer edges. In practice, the grid is
invisible and the outer tiles do not take up space until you populate them with axes or charts.

This code places the dependency chart sc in the third tile of the grid.

sc.Layout.Tile = 3;

To make the dependency chart span multiple tiles, specify the TileSpan property as a two-element
vector. For example, this dependency chart spans two rows and three columns of tiles.

sc.Layout.TileSpan = [2 3];

To place the dependency chart in one of the surrounding tiles, specify the Tile property as "north",
"south", "east", or "west". For example, setting the value to "east" places the dependency chart
in the tile to the right of the grid.

sc.Layout.Tile = "east";

To place the dependency chart in a layout within an app, specify this property as a
GridLayoutOptions object. For more information about working with grid layouts in apps, see
uigridlayout.

If the dependency chart is not a child of a tiled chart layout or a grid layout (for example, if it is a
child of a figure or panel), then this property is empty and has no effect.
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OuterPosition — Size and location, including labels and margin
[0 0 1 1] (default) | four-element vector

Size and location, including the labels and a margin, specified as a four-element vector of the form
[left bottom width height]. By default, MATLAB measures the values in units that are
normalized to the container. To change the units, set the Units property. The default value of [0 0 1
1] includes the whole interior of the container.

* The left and bottom elements define the distance from the lower left corner of the container
(typically a figure, panel, or tab) to the lower left corner of the outer position boundary.

* The width and height elements are the outer position boundary dimensions.

This figure shows the areas defined by the OuterPosition values (blue) and the Position values
(red). By default, InnerPosition and QuterPosition are the same.

IThe quick brown fox jumped over the lazy dég .

For more information, see “Control Axes Layout”.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Position — Size and location, excluding margin for labels
[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector

Size and location, excluding a margin for the labels, specified as a four-element vector of the form
[left bottom width height]. By default, MATLAB measures the values in units that are
normalized to the container. To change the units, set the Units property.

* The left and bottom elements define the distance from the lower left corner of the container
(typically a figure, panel, or tab) to the lower left corner of the position boundary.

* The width and height elements are the position boundary dimensions. For axes in a 3-D view,
the Position property is the smallest rectangle that encloses the axes.

This figure shows the areas defined by the OuterPosition values (blue) and the Position values
(red). By default, InnerPosition and OuterPosition are the same.
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[The quick brown fox jumped over the lazy dbg .

For more information, see “Control Axes Layout”.

Note

» Setting this property has no effect when the parent container is a TiledChartLayout object.

PositionConstraint — Position to hold constant
"outerposition” | "innerposition"

Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

* "outerposition" — The QuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

* "innerposition" — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Units — Position units
"normalized" (default) | "inches" | "centimeters" | "points" | "pixels" | "characters"

Position units, specified as one of these values.

Units Description

"normalized" (default) Normalized with respect to the container, which
is typically the figure or a panel. The lower left
corner of the container maps to (0,0) and the
upper right corner maps to (1,1).

"inches" Inches.

"centimeters" Centimeters.
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Units Description

"characters" Based on the default UIcontrol font of the
graphics root object:

¢ The character width is the width of letter x.

* The character height is the distance between
the baselines of two lines of text.

"points” Typography points. One point equals 1/72 inch.
"pixels" Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows and Macintosh systems.

* On Windows systems, a pixel is 1/96 inch.
* On Macintosh systems, a pixel is 1/72 inch.

* On Linux systems, your system determines the
size of a pixel.

Note When you specify the units as name-value arguments during object creation, you must set the
Units property before specifying the properties that you want to use these units, such as Position.

Visible — State of visibility
"on" (default) | "off"
State of visibility, specified as one of these values:

* "on" — Display the object.

+ "off" — Hide the object without deleting it. You still can access the properties of an invisible
object.

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Version History
Introduced in R2022b

See Also

sentenceChart | wordcloud | textscatter | addDependencyDetails | tokenDetails |
addSentenceDetails | tokenizedDocument

Topics

“Analyze Sentence Structure Using Grammatical Dependency Parsing”
“Prepare Text Data for Analysis”
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“Create Simple Text Model for Classification”
“Language Considerations”
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Length of documents in document array

Syntax

N = doclength(documents)

Description

N = doclength(documents) returns the number of tokens in each document in documents.

Examples

Find Number of Words in Documents

Find the number of words in an array of tokenized documents. Erase the punctuation characters so

they do not get counted as words.

str = [ ...
"An example of a short sentence."
"A second short sentence."];
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

7 tokens: An example of a short sentence .

5 tokens: A second short sentence .

documents = erasePunctuation(documents)

documents =
2x1 tokenizedDocument:

6 tokens: An example of a short sentence
4 tokens: A second short sentence

N = doclength(documents)
N = 2x1

6

4

Input Arguments

documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.

Output Arguments

N — Document lengths
vector of nonnegative integers

Document lengths, returned as a vector of nonnegative integers. The size of N is the same as the size
of documents.

Version History
Introduced in R2017b

See Also
context | doc2cell | joinWords | string | tokenizedDocument
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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doc2cell

Convert documents to cell array of string vectors

Syntax

C = doc2cell(documents)

Description

C = doc2cell(documents) converts a tokenizedDocument array to a cell array. The entries of C
are string arrays containing the corresponding words in each document.

Examples

Convert Document Array to Cell Array

Convert a tokenizedDocument array to a cell array of string vectors.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"])

documents =
1x2 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence
C = doc2cell(documents)

C=1x2 cell array
{[Ilanll Ilexamplell Ilofll Ilall ”Short"
View the first element of the cell array.

{1}

ans = 1x6 string
IIanII IIeXamplell IIOfII Ilall IIShOr.tII

Input Arguments

documents — Input documents
tokenizedDocument array

"sentence"]} {["a"

"sentence"

Input documents, specified as a tokenizedDocument array.

"second"
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Output Arguments

C — Output cell array
cell array of string vectors

Output cell array of string vectors. Each element of C is a string vector containing the words of the
corresponding document.

Version History
Introduced in R2017b

See Also
context | doclength | joinWords | string | tokenizedDocument
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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doc2sequence

Convert documents to sequences for deep learning
Syntax

sequences = doc2sequence(enc,documents)
sequences = doc2sequence(emb,documents)
sequences = doc2sequence( _ ,Name,Value)
Description

sequences = doc2sequence(enc,documents) returns a cell array of the numeric indices of the
words in documents given by the word encoding enc. Each element of sequences is a vector of the
indices of the words in the corresponding document.

sequences = doc2sequence(emb,documents) returns a cell array of the embedding vectors of
the words in documents given by the word embedding emb. Each element of sequences is a matrix
of the embedding vectors of the words in the corresponding document.

sequences = doc2sequence( ,Name, Value) specifies additional options using one or more
name-value pair arguments.

Examples

Convert Documents to Sequences of Word Indices

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument(textData);

Create a word encoding.
enc = wordEncoding(documents);
Convert the documents to sequences of word indices.

sequences = doc2sequence(enc,documents);

View the sizes of the first 10 sequences. Each sequence is a 1-by-S vector, where S is the number of
word indices in the sequence. Because the sequences are padded, S is constant.

sequences(1:10)

ans=10x1 cell array

{I ©O0000O0OO012345678910]}
112 13 14 152 16 17 18 19 10]}
0 221227 2324257 26 10]}

{I 0001
{I 00002
{I OPOOOOODOOOOO27 2867 18 101}
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{I O00OO00OO0O0O0OO06OOO629 307 31 101}
{I © 0000006323367 343536 37 38 10]}
{I OO00O00O00OO0O 39 40 36 41 6 7 42 10]}
{I 0O 000O0O0OO 4344 2245 46 47 7 48 101}
{I OO00O0O00O00OO0O0OO49 50 17 7 51 48 101}
{[6 0 6 0 52 8 53 36 54 55 56 57 58 59 22 60 10]}

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained word
embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The doc2sequence
function, by default, left-pads the sequences to have the same length. When converting large
collections of documents using a high-dimensional word embedding, padding can require large
amounts of memory. To prevent the function from padding the data, set the 'PaddingDirection'
option to 'none'. Alternatively, you can control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents, 'PaddingDirection', 'none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence.

sequences(1:10)

ans=10x1 cell array
{300x10 single}
{300x11 single}
{300x11 single}
{300x6 single}
{300x5 single}
{300x10 single}
{300x8 single}
{300x9 single}
{300x7 single}
{300x13 single}
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Pad or Truncate Sequences to Specified Length

Convert a collection of documents to sequences of word vectors using a pretrained word embedding,
and pad or truncate the sequences to a specified length.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors. Specify to left-pad or truncate the sequences to
have length 100.

sequences = doc2sequence(emb,documents, 'Length',100);

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence (the sequence length). Because the
sequence length is specified, S is constant.

sequences(1:10)

ans=10x1 cell array
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}

Input Arguments

emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Length', 'shortest' truncates the sequences to have the same length as the shortest
sequence.

UnknownWord — Unknown word behavior
‘discard' (default) | 'nan’

Unknown word behavior, specified as the comma-separated pair consisting of 'UnknownWord' and
one of the following:

* ‘'discard' -If a word is not in the input map, then discard it.

* 'nan' -If a word is not in the input map, then return a NaN value.

Tip If you are creating sequences for training a deep learning network with a word embedding, use
'discard'. Do not use sequences with NaN values, because doing so can propagate errors through
the network.

PaddingDirection — Padding direction
"left' (default) | 'right' | 'none’

Padding direction, specified as the comma-separated pair consisting of 'PaddingDirection' and
one of the following:

+ 'left' - Pad sequences on the left.

* 'right' - Pad sequences on the right.

* 'none' - Do not pad sequences.

Tip When converting large collections of data using a high-dimensional word embedding, padding
can require large amounts of memory. To prevent the function from adding too much padding, set the
'"PaddingDirection’ optionto 'none' orset 'Length' to a smaller value.

PaddingValue — Padding value
0 (default) | numeric scalar

Padding value, specified as the comma-separated pair consisting of 'PaddingValue' and a numeric
scalar. Do not pad sequences with NaN, because doing so can propagate errors through the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Length — Sequence length
'longest' (default) | 'shortest' | positive integer
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Sequence length, specified as the comma-separated pair consisting of 'Length' and one of the

following:

* ‘'longest' - Pad sequences to have the same length as the longest sequence.

* 'shortest' - Truncate sequences to have the same length as the shortest sequence.

» Positive integer - Pad or truncate sequences to have the specified length. The function truncates
the sequences on the right.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
char|string

Output Arguments

sequences — Output sequences
cell array

Output sequences, returned as a cell array.

For word embedding input, the ith element of sequences is a matrix of the word vectors
corresponding to the ith input document.

For word encoding input, the ith element of sequences is a vector of the word encoding indices
corresponding to the ith input document.

Tips

*  When converting large collections of data using a high-dimensional word embedding, padding can
require large amounts of memory. To prevent the function from adding too much padding, set the
"PaddingDirection’' optionto 'none' orset 'Length' to a smaller value.

Version History
Introduced in R2018b

See Also

fastTextWordEmbedding | wordEncoding | wordEmbeddinglLayer | word2vec | word2ind |
vec2word | ind2word | isVocabularyWord | trainWordEmbedding | wordEmbedding |
tokenizedDocument

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
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docfun

Apply function to words in documents

Syntax

newDocuments = docfun(func,documents)

newDocuments = docfun(func,documentsl,...,documentsN)
Description

newDocuments = docfun(func,documents) calls the function specified by the function handle
func and passes elements of documents as a string vector of words.

» If func accepts exactly one input argument, then the words of newDocuments (i) are the output
of func(string(documents(i))).

» If func accepts two input arguments, then the words of newDocuments (i) are the output of
func(string(documents(i)),details), where details contains the corresponding token
details output by tokenDetails.

» If func changes the number of words in the document, then docfun removes the token details
from that document.

docfun does not perform the calls to function func in a specific order.

newDocuments = docfun(func,documentsl,...,documentsN) calls the function specified by
the function handle func and passes elements of documents1,..,documentsN as string vectors of
words, where N is the number of inputs to the function func. The words of newDocuments (i) are
the output of func(string(documentsl(i)),...,string(documentsN(i))).

Each of documentsl,..,documentsN must be the same size.

Examples

Reverse Words in Documents

Apply reverse to each word in a document array.

documents = tokenizedDocument([ ...
"an example of a short sentence"
"a second short sentence"])

documents =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

func = @reverse;
newDocuments = docfun(func,documents)
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newDocuments =
2x1 tokenizedDocument:

6 tokens: na elpmaxe fo a trohs ecnetnes
4 tokens: a dnoces trohs ecnetnes

Specify Document Function with Multiple Inputs

Tag words by combining the words from one document array with another, using the string function
plus.

Create the first tokenizedDocument array. Erase the punctuation and convert the text to lowercase.

str = [ .

"An example of a short sentence."
"A second short sentence."];

str = erasePunctuation(str);

str = lower(str);

documentsl = tokenizedDocument(str)

documentsl =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

Create the second tokenizedDocument array. The documents have the same number of words as
the corresponding documents in documents1. The words of documents?2 are POS tags for the
corresponding words.

documents2 = tokenizedDocument ([
" det noun prep det adj noun"
" det adj adj noun"])

documents?2 =
2x1 tokenizedDocument:

6 tokens: det noun prep _det _adj _noun
4 tokens: _det _adj _adj _noun

func = @plus;

newDocuments docfun(func,documentsl,documents?)

newDocuments =
2x1 tokenizedDocument:

6 tokens: an_det example _noun of prep a det short adj sentence noun
4 tokens: a_det second adj short adj sentence noun

The output is not the same as calling plus on the documents directly.

plus(documentsl,documents?2)
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ans =
2x1 tokenizedDocument:

12 tokens: an example of a short sentence det noun prep det adj noun
8 tokens: a second short sentence det adj _adj noun

Input Arguments

func — Function handle
function handle

Function handle that accepts N string arrays as inputs and outputs a string array. func must accept
string(documentsl(i)),...,string(documentsN(i)) as input.

Function handle to apply to words in documents. The function must have one of the following
syntaxes:
* newWords = func(words), where words is a string array of the words of a single document.

* newWords func(words,details), where words is a string array of the words of a single
document, and details is the corresponding table of token details given by tokenDetails.

* newWords = func(wordsl,...,wordsN), where wordsl, ...,wordsN are string arrays of
words.

Example: @reverse

Data Types: function handle

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Version History
Introduced in R2017b

See Also

decodeHTMLEntities | Lower | upper | tokenDetails | addSentenceDetails |
addPart0fSpeechDetails | plus | replace | regexprep | tokenizedDocument | bagOfWords |
bag0OfNgrams

Topics
“Prepare Text Data for Analysis”
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“Create Simple Text Model for Classification”
“Create Custom Spelling Correction Function Using Edit Distance Searchers”
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editDistance

Find edit distance between two strings or documents

Syntax

editDistance(strl,str2)
editDistance(documentl,document?2)
editDistance( __ ,Name,Value)

d
d
d

Description

d = editDistance(strl,str2) returns the lowest number of grapheme (Unicode term for
human-perceived characters) insertions, deletions, and substitutions required to convert strl to
str2.

d = editDistance(documentl,document?2) returns the lowest number of token insertions,
deletions, and substitutions required to convert documentl to document?2.

d = editDistance( ,Name, Value) specifies additional options using one or more name-value
pair arguments.

Examples

Edit Distance Between Two Strings

Find the edit distance between the strings "Text analytics" and "Text analysis". The edit
distance, by default, is the total number of grapheme insertions, deletions, and substitutions required
to change one string to another.

strl
str2

"Text analytics";
"Text analysis";

Find the edit distance.

d editDistance(strl,str2)
d =2
This means changing the first string to the second requires two edits. For example:

1 Substitution - Substitute the character "t" toan "s": "Text analytics" to "Text
analysics".

2 Deletion - Delete the character "c": "Text analysics" to "Text analysis".
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Edit Distance Between Two Documents

Find the edit distance between two tokenized documents. For tokenized document input, the edit
distance, by default, is the total number of token insertions, deletions, and substitutions required to
change one document to another.

strl = "It's time for breakfast.";
documentl = tokenizedDocument(strl);

str2 = "It's now time to sleep.";
document2 = tokenizedDocument(str2);

Find the edit distance.

d = editDistance(documentl,document2)

d=3

This means changing the first document to the second requires three edits. For example:
1 Insertion - Insert the word "now".

2 Substitution - Substitute the word "for" with "to".

3 Substitution - Substitute the word "breakfast" with "sleep".

Specify Cost Values

The editDistance function, by default, returns the lowest number of grapheme insertions,
deletions, and substitutions required to change one string to another. To also include the swap action
in the calculation, use the 'SwapCost' option.

First, find the edit distance between the strings "MATALB" and "MATLAB".

strl "MATALB";
str2 "MATLAB";
d = editDistance(strl,str2)

d =2
One possible edit is:

1 Substitute the second "A" with "L": ("MATALB" to "MATLLB").
2  Substitute the second "L" with "A": ("MATLLB" to "MATLAB").

The default value for the swap cost (the cost of swapping two adjacent graphemes) is Inf. This
means that swaps do not count towards the edit distance. To include swaps, set the 'SwapCost'
option to 1.

d

editDistance(strl,str2, 'SwapCost',1)
d=1

This means there is one action. For example, swap the adjacent characters "A" and "L".
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Specify Custom Cost Function

To compute the edit distance between two words and specify that the edits are case-insensitive,
specify a custom substitute cost function.

First, compute the edit distance between the strings "MATLAB" and "MathWorks".
d

editDistance("MATLAB", "MathWorks")
d =8
This means changing the first string to the second requires eight edits. For example:

Substitution - Substitute the character "A" with "a". ("MATLAB" to "MaTLAB")
Substitution - Substitute the character "T" with "t". ("MaTLAB" to "MatLAB")
Substitution - Substitute the character "L" with "h". ("MatLAB" to "MathAB")
Substitution - Substitute the character "A" with "W". ("MathAB" to "MathWB")
Substitution - Substitute the character "B" with "o0". ("MathWB" to "MathWo")
Insertion - Insert the character "r". ("MathWo" to "MathWor")

Insertion - Insert the character "k". ("MathWor" to "MathWork")

Insertion - Insert the character "s". ("MathWork" to "MathWorks")

0 N OO B A W N MR

Compute the edit distance and specify the custom substitution cost function
caselnsensitiveSubstituteCost, listed at the end of the example. The custom function
caseInsensitiveSubstituteCost returns O if the two inputs are the same or differ only by case
and returns 1 otherwise.

d editDistance("MATLAB", "MathWorks", 'SubstituteCost',@caseInsensitiveSubstituteCost)

d==56
This means the total cost for changing the first string to the second is 6. For example:

Substitute the character "A" with "a". ("MATLAB" to "MaTLAB")

Substitution (cost 0 L

Substitute the character "T" with "t". ("MaTLAB" to "MatLAB")
- (
- (

Substitution (cost 0
Substitute the character "L" with "h". ("MatLAB" to "MathAB")
Substitute the character "A" with "W". ("MathAB" to "MathWB")
Substitution (cost 1) - Substitute the character "B" with "0". ("MathWB" to "MathWo"
Insert (cost 1) - Insert the character "r". ("MathWo" to "MathWor")

Insert (cost 1) - Insert the character "k". ("MathWor" to "MathWork")

Insert (cost 1) - Insert the character "s". ("MathWork" to "MathWorks")

)_
)_
)_
)_

(

(

Substitution (cost 1

Substitution (cost 1
(

00 N OO U1 A W N MR

Custom Cost Function

The custom function caseInsensitiveSubstituteCost returns 0 if the two inputs are the same
or differ only by case and returns 1 otherwise.

function cost = caseInsensitiveSubstituteCost(graphemel,grapheme2)

if lower(graphemel) == lower(grapheme2)
cost = 0;
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else
cost = 1;
end

end

Input Arguments

strl — Source string
string array | character vector | cell array of character vectors

Source string, specified as a string array, character vector, or a cell array of character vectors.

If strl contains multiple strings, then str2 must be the same size as strl or scalar.

Data Types: char | string | cell

str2 — Target string
string array | character vector | cell array of character vectors

Target string, specified as a string array, character vector, or a cell array of character vectors.

If str2 contains multiple strings, then strl must be the same size as str2 or scalar.

Data Types: char | string | cell

documentl — Source document
tokenizedDocument

Source document, specified as a tokenizedDocument array.

If documentl contains multiple documents, then document2 must be the same size as documentl
or scalar.

document2 — Target document
tokenizedDocument

Target document, specified as a tokenizedDocument array.

If document?2 contains multiple documents, then documentl must be the same size as document2
or scalar.

Name-Value Pair Arguments
Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after

other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: editDistance("MATALB", "MATLAB", 'SwapCost', 1) returns the edit distance between
the strings "MATALB" and "MATLAB" and sets the cost to swap two adjacent graphemes to 1.

InsertCost — Cost to insert grapheme or token
1 (default) | nonnegative scalar | function handle
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Cost to insert a grapheme or token, specified as the comma-separated pair consisting of
'"InsertCost' and a nonnegative scalar or a function handle.

If 'InsertCost’' is a function handle, then the function must accept a single input and return the
cost of inserting the input to the source. For example:

* For string input to editDistance, the cost function must have the form cost =
func(grapheme), where the function returns the cost of inserting grapheme into strl.

» For document input to editDistance, the cost function must have the form cost =
func(token), where the function returns the cost of inserting token into documentl.

Example: 'InsertCost"',?2

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

DeleteCost — Cost to delete grapheme or token
1 (default) | nonnegative scalar | function handle

Cost to delete grapheme or token, specified as the comma-separated pair consisting of
'DeleteCost' and a nonnegative scalar or a function handle.

If 'DeleteCost' is a function handle, then the function must accept a single input and return the
cost of deleting the input from the source. For example:

* For string input to editDistance, the cost function must have the form cost =
func(grapheme), where the function returns the cost of deleting grapheme from strl.

* For document input to editDistance, the cost function must have the form cost =
func(token), where the function returns the cost of deleting token from documentl.

Example: 'DeleteCost’,?2

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

SubstituteCost — Cost to substitute grapheme or token
1 (default) | nonnegative scalar | function handle

Cost to substitute a grapheme or token, specified as the comma-separated pair consisting of
'SubstituteCost' and a nonnegative scalar or a function handle.

If 'SubstituteCost' is a function handle, then the function must accept exactly two inputs and
return the cost of substituting the first input with the second in the source. For example:

* For string input to editDistance, the cost function must have the form cost =
func(graphemel,grapheme2), where the function returns the cost of substituting graphemel
with grapheme2 in strl.

* For document input to editDistance, the cost function must have the form cost =
func(tokenl, token2), where the function returns the cost of substituting tokenl with token2
in documentl.

Example: 'SubstituteCost"',?2

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle
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SwapCost — Cost to swap two adjacent graphemes or tokens
Inf (default) | nonnegative scalar | function handle

Cost to swap two adjacent graphemes or tokens, specified as the comma-separated pair consisting of
'SwapCost' and a nonnegative scalar or a function handle.

If 'SwapCost' is a function handle, then the function must accept exactly two inputs and return the
cost of swapping the first input with the second in the source. For example:

* For string input to editDistance, the cost function must have the form cost =
func(graphemel,grapheme2), where the function returns the cost of swapping the adjacent
graphemes graphemel and grapheme2 in strl.

* For document input to editDistance, the cost function must have the form cost =
func(tokenl, token2), where the function returns the cost of swapping the adjacent tokens
tokenl and token2 in documentl.

Example: 'SwapCost', 2

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

Output Arguments

d — Edit distance
nonnegative scalar

Edit distance, returned as a nonnegative scalar.

Algorithms
Edit Distance

The function, by default, uses the Levenshtein distance: the lowest number of insertions, deletions,
and substitutions required to convert one string to another.

For other commonly used edit distances, use these options:

Distance Description Options
Levenshtein (default) lowest number of insertions, Default
deletions, and substitutions
Damerau-Levenshtein lowest number of insertions, ‘SwapCost',1
deletions, substitutions, and
swaps
Hamming lowest number of substitutions |'InsertCost',Inf, 'Delete
only Cost',Inf

Version History
Introduced in R2019a
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See Also

correctSpelling | editDistanceSearcher | knnsearch | rangesearch | splitGraphemes |
tokenizedDocument

Topics

“Correct Spelling in Documents”

“Create Extension Dictionary for Spelling Correction”

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”
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editDistanceSearcher

Edit distance nearest neighbor searcher

Description

An edit distance searcher performs a nearest neighborhood search in a list of known strings, using
edit distance.

Creation

Syntax

eds
eds

editDistanceSearcher(vocabulary,maxDist)
editDistanceSearcher(vocabulary,maxDist,Name,Value)

Description

eds = editDistanceSearcher(vocabulary,maxDist) creates an edit distance searcher and
sets the Vocabulary and MaximumDistance properties. The returned object searches the words in
vocabulary and with maximum edit distance maxDist.

eds = editDistanceSearcher(vocabulary,maxDist,Name,Value) specifies additional
options using one or more name-value pair arguments.

Properties

Vocabulary — Words to compare against
string vector | character vector | cell array of character vectors

Words to compare against, specified as a string vector, character vector, or a cell array of character
vectors.

Data Types: char | string | cell

MaximumDistance — Maximum edit distance
positive scalar

Maximum edit distance, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

InsertCost — Cost to insert grapheme
1 (default) | nonnegative scalar | function handle

Cost to insert grapheme, specified as a nonnegative scalar or a function handle.

If InsertCost is a function handle, then the function must accept a single input and return the cost
of inserting the input to the source. The cost function must have the form cost =
func(grapheme), where the function returns the cost of inserting grapheme into the source string.
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If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

DeleteCost — Cost to delete grapheme
1 (default) | nonnegative scalar | function handle

Cost to delete grapheme, specified as a nonnegative scalar or a function handle.

If DeleteCost is a function handle, then the function must accept a single input and return the cost
of deleting the input from the source. The cost function must have the form cost =
func(grapheme), where the function returns the cost of deleting grapheme from the source string.

If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

SubstituteCost — Cost to substitute grapheme
1 (default) | nonnegative scalar | function handle

Cost to substitute grapheme, specified as a nonnegative scalar or a function handle.

If SubstituteCost is a function handle, then the function must accept exactly two inputs and return
the cost of substituting the first input to the second in the source. The cost function must have the
form cost = func(graphemel, grapheme2), where the function returns the cost of substituting
graphemel with grapheme2 in the source.

If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

SwapCost — Cost to swap adjacent graphemes
Inf (default) | nonnegative scalar | function handle

Cost to swap adjacent graphemes, specified as a nonnegative scalar or a function handle.

If SwapCost is a function handle, then the function must accept exactly two inputs and return the
cost of swapping the first input with the second in the source. The cost function must have the form
cost = func(graphemel,grapheme2), where the function returns the cost of swapping the
adjacent graphemes graphemel and grapheme2 in the source.

If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

Object Functions
rangesearch Find nearest neighbors by edit distance range
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knnsearch Find nearest neighbors by edit distance

Examples

Create Edit Distance Searcher

Create an edit distance searcher with a maximum edit distance 3 from the words "MathWorks",
"MATLAB", and "Analytics".

vocabulary = ["MathWorks" "MATLAB" "Analytics"];
eds = editDistanceSearcher(vocabulary,3)

eds =
editDistanceSearcher with properties:

Vocabulary: ["MathWorks" "MATLAB" "Analytics"]
MaximumDistance: 3
InsertCost: 1
DeleteCost: 1
SubstituteCost: 1
I

SwapCost: Inf

Create Damerau-Levenshtein Edit Distance Searcher

Create an edit distance searcher using the Damerau-Levenshtein edit distance. The Damerau-
Levenshtein edit distance is the lowest number of insertions, deletions, substitutions, and swaps.

Create the edit distance searcher from the words "MathWorks", "MATLAB", and "Analytics" and
specify a maximum distance of 3. To specify the Damerau-Levenshtein edit distance, set ' SwapCost'
to 1.

vocabulary = ["MathWorks" "MATLAB" "Analytics"];
eds = editDistanceSearcher(vocabulary,3, 'SwapCost',1)

eds =
editDistanceSearcher with properties:
Vocabulary: ["MathWorks" "MATLAB" "Analytics"]
MaximumDistance: 3
InsertCost: 1
DeleteCost: 1
SubstituteCost: 1
SwapCost: 1

Find Nearest Words

Create an edit distance searcher.
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vocabulary = ["Text" "Analytics" "Toolbox"];
eds = editDistanceSearcher(vocabulary,2);

Find the nearest words to "Test" and "Analysis".

words = ["Test" "Analysis"];
idx = knnsearch(eds,words)

idx = 2x1

1
2

Get the words from the vocabulary using the returned indices.
nearestWords = eds.Vocabulary(idx)

nearestWords = 1x2 string
"Text" "Analytics”

Find Nearest Neighbors in Range

Create an edit distance searcher and specify a maximum edit distance of 3.

vocabulary = ["MathWorks" "MATLAB" "Simulink" "text" "analytics" "analysis"];
maxDist = 3;
eds = editDistanceSearcher(vocabulary,maxDist);

Find the nearest words to "test", "analytic", and "analyze" with edit distance less than or
equal to 1.

words = ["test" "analytic" "analyze"];
maxDist = 1;
idx = rangesearch(eds,words,maxDist)

idx=3x1 cell array
{I 41}

{I 51}
{1x0 double}

For "analyze", there are no words in the searcher within the specified range. For "test" and
"analytic", there is one result each. View the corresponding word for "test" using the returned
index.

nearestWords

eds.Vocabulary(idx{2})

nearestWords
"analytics"

Find the nearest words to "test", "analytic", and "analyze" with edit distance less than or
equal to 3 and their corresponding edit distances.



editDistanceSearcher

maxDist 3;

words = ["test" "analytic" "analyze"l];

[idx,d]

idx=3x1
{I
{[5
{I

cell array
41}
61}
61}

d=3x1 cell array

{[ 11}
{[1 2]}
{[ 31}

rangesearch(eds,words,maxDist)

For both "test" and "analyze", there is one word in the searcher within the specified range. For
"analytic", there are two results. View the corresponding words for "analytic" (the second
word) using the returned indices and their edit distances.

i=2;
nearestWords = eds.Vocabulary(idx{i})
nearestWords = 1x2 string
"analytics"” "analysis"
d{i}
ans = 1Ix2
1 2
Algorithms

Edit Distance

The function, by default, uses the Levenshtein distance: the lowest number of insertions, deletions,
and substitutions required to convert one string to another.

For other commonly used edit distances, use these options:

Distance Description Options

Levenshtein (default) lowest number of insertions, Default
deletions, and substitutions

Damerau-Levenshtein lowest number of insertions, 'SwapCost',1

deletions, substitutions, and
swaps

Hamming

lowest number of substitutions
only

'InsertCost',Inf, 'Delete
Cost',Inf
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Version History
Introduced in R2019a

See Also

correctSpelling | editDistance | knnsearch | rangesearch | splitGraphemes |
tokenizedDocument

Topics

“Correct Spelling in Documents”

“Create Extension Dictionary for Spelling Correction”

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”
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encode

Encode documents as matrix of word or n-gram counts

Syntax

counts = encode(bag,documents)

counts = encode(bag,words)
counts = encode(  ,Name,Value)
Description

Use encode to encode an array of tokenized documents as a matrix of word or n-gram counts
according to a bag-of-words or bag-of-n-grams model. To encode documents as vectors or word

indices, use a wordEncoding object.

counts = encode(bag,documents) returns a matrix of frequency counts for documents based

on the bag-of-words or bag-of-n-grams model bag.

counts = encode(bag,words) returns a matrix of frequency counts for a list of words.

counts = encode( ,Name, Value) specifies additional options using one or more name-value

pair arguments.

Examples

Encode Documents as Word Count Matrix

Encode an array of documents as a matrix of word counts.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [2x7 double]
Vocabulary: ["an" "example" "of" "a"
NumWords: 7
NumDocuments: 2

documents = tokenizedDocument([
"a new sentence"
"a second new sentence"])

documents =
2x1 tokenizedDocument:

3 tokens: a new sentence

"short" "sentence" "second"]
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4 tokens: a second new sentence

View the documents encoded as a matrix of word counts. The word "new" does not appear in bag, so

it is not counted.

counts = encode(bag,documents);
full(counts)

ans = 2x7

0
0

[oNo]

The columns correspond to the vocabulary of the bag-of-words model.
bag.Vocabulary

ans = 1x7 string
"an" "example" "of" "a" "short" "sentence

Encode Words as Word Count Vector

Encode an array of words as a vector of word counts.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0OfWords(documents)

bag =
bagO0fWords with properties:

Counts: [2x7 double]
Vocabulary: ["an" "example" "of" "a" "short"
NumWords: 7
NumDocuments: 2

"second"

"sentence

words = ["another" "example" "of" "a" "short" "example" "sentence"];

counts = encode(bag,words)

counts =
(1,2) 2
(1,3) 1
(1,4) 1
(1,5) 1
(1,6) 1

"second"]
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Output Document Word Counts in Columns

Encode an array of documents as a matrix of word counts with documents in columns.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);
bag0OfWords (documents)

bag

bag =
bagO0fWords with properties:

Counts: [2x7 double]
Vocabulary: ["an" "example" "of" "a"
NumWords: 7
NumDocuments: 2

documents = tokenizedDocument ([
"a new sentence"
"a second new sentence"])

documents =
2x1 tokenizedDocument:

3 tokens: a new sentence
4 tokens: a second new sentence

"short"

"sentence"

"second"]

View the documents encoded as a matrix of word counts with documents in columns. The word "new"

does not appear in bag, so it is not counted.

counts = encode(bag,documents, 'DocumentsIn', 'columns');

full(counts)

ans = 7x2

ol Nol SN oNoNO]
HFRFOHROOO

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams

object.

documents — Input documents

tokenizedDocument array | string array of words | cell array of character vectors
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Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is a string array or a cell array of character vectors, then it must be
a row vector representing a single document, where each element is a word.

Tip To ensure that the documents are encoded correctly, you must preprocess the input documents
using the same steps as the documents used to create the input model. For an example showing how
to create a function to preprocess text data, see “Prepare Text Data for Analysis”.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'DocumentsIn', 'rows' specifies the orientation of the output documents as rows.

DocumentsIn — Orientation of output documents
‘rows' (default) | 'columns'

Orientation of output documents in the frequency count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Return a matrix of frequency counts with rows corresponding to documents.

* ‘'columns' - Return a transposed matrix of frequency counts with columns corresponding to
documents.

Data Types: char

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated pair
consisting of 'ForceCellOutput' and true or false.

Data Types: logical

Output Arguments

counts — Word or n-gram counts
sparse matrix | cell array of sparse matrices

Word or n-gram counts, returned as a sparse matrix of nonnegative integers or a cell array of sparse
matrices.
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If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns the outputs as
a cell array of sparse matrices. Each element in the cell array is matrix of word or n-gram counts of
the corresponding element of bag.

Version History
Introduced in R2017b

See Also
bagO0fWords | bag0OfNgrams | tfidf | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”
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erasePunctuation

Erase punctuation from text and documents

Syntax

newStr = erasePunctuation(str)
newDocuments = erasePunctuation(documents)
newDocuments = erasePunctuation(documents, 'TokenTypes', types)

Description

newStr = erasePunctuation(str) erases punctuation and symbols from the elements of str.
The function removes characters that belong to the Unicode punctuation or symbol classes.

newDocuments = erasePunctuation(documents) erases punctuation and symbols from
documents. If a word is empty after removing punctuation and symbol characters, then the function
removes it. For tokenized document input, the function erases punctuation from tokens with type
"punctuation' and 'other'. For example, the function does not erase punctuation and symbol
characters from URLs and email addresses.

newDocuments = erasePunctuation(documents, 'TokenTypes', types) erases punctuation
and symbols from only the specified token types.

Examples

Erase Punctuation from Text

Erase the punctuation from the text in str.

str = "it's one and/or two.";
newStr = erasePunctuation(str)

newStr =
"its one andor two"

To insert a space where the "/" symbol is, first use the replace function.
newStr = replace(str,"/"," ")

newStr =
"it's one and or two."

newStr = erasePunctuation(newStr)

newStr =
"its one and or two"
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Erase Punctuation from Documents

Erase the punctuation from an array of documents.

documents = tokenizedDocument([
"An example of a short sentence."
"Another example... with a URL: https://www.mathworks.com"])

documents =
2x1 tokenizedDocument:

7 tokens: An example of a short sentence .
10 tokens: Another example . . . with a URL : https://www.mathworks.com
newDocuments = erasePunctuation(documents)

newDocuments =
2x1 tokenizedDocument:

6 tokens: An example of a short sentence

6 tokens: Another example with a URL https://www.mathworks.com

Here, the function does not erase the punctuation symbols from the URL.

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

types — Token types to erase punctuation from
{'punctuation', 'other'} (default) | string array | character vector | cell array of character
vectors

Token types to erase punctuation from, specified as a character vector, string array, or a cell array of
character vectors containing one or more token types (including custom token types).

The tokenizedDocument and addTypeDetails functions automatically detect the following token
types:

* letters — string of letter characters only

* digits — string of digits only

* punctuation — string of punctuation and symbol characters only
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*+ email-address — detected email address

* web-address — detected web address

* hashtag — detected hashtag (starts with "#" character followed by a letter)

* at-mention — detected at-mention (starts with "@" character)

* emoticon — detected emoticon

* emoji — detected emoji

* other — does not belong to the previous types and is not a custom type

To specify your own custom token types when tokenizing, use the 'CustomTokens' or

'RegularExpressions' options in tokenizedDocument. If you do not specify a type for a custom
token, then the software sets the corresponding token type to 'custom'.

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character vectors. str and
newStr have the same data type.

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

More About

Unicode Character Categories

Each Unicode character is assigned a category. The following table summarizes the Unicode
punctuation and symbol categories and provides an example character from each category:

Category Category Code Number of Characters [Example Character
Punctuation, Connector |[Pc] 10 B
Punctuation, Dash [Pd] 24 -
Punctuation, Close [Pe] 73 )
Punctuation, Final [Pf] 10 "
quote

Punctuation, Initial [Pi] 12 “
quote

Punctuation, Other [Po] 566 !
Punctuation, Open [Ps] 75 (
Symbol, Currency [Sc] 54 $
Symbol, Modifier [Sk] 121 ~
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Category Category Code Number of Characters |[Example Character
Symbol, Math [Sm] 948 +
Symbol, Other [Sol] 5855 ]

For more information, see [1].

Tips

* For string input, erasePunctuation removes punctuation characters from URLs and HTML
tags. This behavior can prevent the functions eraseTags, eraseURLs, and
decodeHTMLEntities from working as expected. If you want to use these functions to
preprocess your text, then use these functions before using erasePunctuation.

Version History
Introduced in R2017b

R2018b: erasePunctuation skips complex tokens
Behavior changed in R2018b

Starting in R2018b, for tokenizedDocument input, erasePunctuation, by default, erases
punctuation and symbol characters from tokens with type 'punctuation’ or 'other' only. This
behavior prevents the function from affecting complex tokens such as URLs and email-addresses.

In previous versions, erasePunctuation erases punctuation characters from all tokens. To
reproduce the behavior, use the ' TokenTypes' name-value pair.

References

[1] Unicode Character Categories. https://www.fileformat.info/info/unicode/category/index.htm
See Also

decodeHTMLEntities | eraseTags | eraseURLs | lower | upper | tokenizedDocument
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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eraseTags

Erase HTML and XML tags from text

Syntax

newStr = eraseTags(str)

Description
newStr = eraseTags(str) erases HTML and XML comments and tags from the elements of str.
The function erases comments and tags with tag name a, abbr, acronym, b, bdi, bdo, big, code,

del, dfn, em, font, i, ins, kbd, mark, rp, rt, ruby, s, small, span, strike, strong sub, sup,
tt, u, var and wbr, and replaces all other tags with a space.

Tip The eraseTags function erases the HTML and XML tags only. It does not erase HTML and XML
elements. That is, the function removes tags of the form <X>, where X denotes the tag name and any
attributes. The function does not remove content that appears between opening and closing tags. For
example, eraseTags ( "x<a>y</a>") returns the string "xy". It only removes the tags <a> and
</a>, and does not remove the element <a>y</a>.

Examples

Erase HTML and XML Tags and Comments

Erase the tags from some HTML code. The function replaces the <br> tag with a space.

htmlCode = "one.<br>two";
newStr = eraseTags(htmlCode)

newStr =
"one. two"

Erase the tags from some XML code. The function removes the <sub> tags and does not replace them
with a space.

xmlCode = "H<sub>2</sub>0";
newStr = eraseTags(xmlCode)

newStr =
"H20"

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
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Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character vectors. str and
newStr have the same data type.

Version History
Introduced in R2017b

See Also
decodeHTMLEntities | eraseURLs | erasePunctuation | lower | upper | tokenizedDocument
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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eraseURLs

Erase HTTP and HTTPS URLs from text

Syntax

newStr = eraseURLs(str)

Description

newStr = eraseURLs(str) erases HTTP and HTTPS URLs from the elements of str.

Examples

Erase URL from Text

Erase the URL from the text in str.

str = "For more information, see https://www.mathworks.com";
newStr = eraseURLs(str)

newStr =
"For more information, see "

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character vectors. str and
newStr have the same data type.

Version History
Introduced in R2017b
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See Also
decodeHTMLEntities | eraseTags | erasePunctuation | lower | upper | tokenizedDocument

Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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Read text from PDF, Microsoft Word, HTML, and plain text files

Syntax

str = extractFileText(filename)

str = extractFileText(filename,Name,Value)

Description

str = extractFileText(filename) reads the text data from a file as a string.

str = extractFileText(filename,Name,Value) specifies additional options using one or more

name-value pair arguments.

Examples

Extract Text Data from Text File

Extract the text from sonnets. txt using extractFileText. The file sonnets. txt contains
Shakespeare's sonnets in plain text.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I1");

ii = strfind(str,"II");

start = i(1);

fin = 1i(1);
extractBetween(str,start,fin-1)

ans =
"I

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.
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Extract Text Data from PDF

Extract the text from exampleSonnets.pdf using extractFileText. The file
exampleSonnets.pdf contains Shakespeare's sonnets in a PDF file.

str = extractFileText("exampleSonnets.pdf");
View the second sonnet.

ii = strfind(str,"II");

iii = strfind(str,"III");

start = 1i(1);

fin = iii(1);
extractBetween(str,start,fin-1)

ans =
"TI

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,"
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

Extract the text from pages 3, 5, and 7 of the PDF file.

pages = [3 5 7];
str = extractFileText("exampleSonnets.pdf",
'Pages',pages);

View the 10th sonnet.

X = strfind(str,"X");

xi = strfind(str,"XI");

start = x(1);

fin = xi(1);
extractBetween(str,start,fin-1)

ans =
"X

Is it for fear to wet a widow's eye,
That thou consum'st thy self in single life?
Ah! if thou issueless shalt hap to die,
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The world will wail thee like a makeless wife;
The world will be thy widow and still weep
That thou no form of thee hast left behind,
When every private widow well may keep
By children's eyes, her husband's shape in mind:
Look! what an unthrift in the world doth spend
Shifts but his place, for still the world enjoys it;
But beauty's waste hath in the world an end,
And kept unused the user so destroys it.

No love toward others in that bosom sits

That on himself such murd'rous shame commits.

X

For shame! deny that thou bear'st love to any,

Who for thy self art so unprovident.

Grant, if thou wilt, thou art belov'd of many,

But that thou none lov'st is most evident:

For thou art so possess'd with murderous hate,

That 'gainst thy self thou stick'st not to conspire,
Seeking that beauteous roof to ruinate

Which to repair should be thy chief desire.

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file names
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the read function to be
extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn', readFcn);

Create an empty bag-of-words model.
bag = bag0fWords

bag =
bagO0fWords with properties:

Counts: [
Vocabulary: [
NumWords: 0
NumDocuments: 0

1
1x0 string]

Loop over the files in the datastore and read each file. Tokenize the text in each file and add the
document to bag.

while hasdata(fds)
str = read(fds);
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document = tokenizedDocument(str);
bag = addDocument(bag,document);
end

View the updated bag-of-words model.
bag

bag =
bagOfWords with properties:

Counts: [4x276 double]
Vocabulary: ["From" "fairest" "creatures"
NumWords: 276
NumDocuments: 4

we "desire" "increase"

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the HTML code as
a string.

code = "<html><body><h1>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str =
“THE SONNETS

by William Shakespeare"

Input Arguments

filename — Name of file
string scalar | character vector | 1-by-1 cell array containing a character vector

Name of the file, specified as a string scalar, character vector, or a 1-by-1 cell array containing a
character vector.

Data Types: string | char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ... ,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after

other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Pages',[1 3 5] specifies to read pages 1, 3, and 5 from a PDF file.

Encoding — Character encoding
‘auto’ (default) | 'UTF-8"' | 'IS0-8859-1" | 'windows-1251" | 'windows-1252" | ...
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Character encoding to use, specified as the comma-separated pair consisting of 'Encoding' and a
character vector or a string scalar. The character vector or string scalar must contain a standard
character encoding scheme name such as the following.

"Big5" "IS0-8859-1" "windows-874"
"Big5-HKSCS" "IS0-8859-2" "windows-949"
"CP949" "IS0-8859-3" "windows-1250"
"EUC-KR" "IS0-8859-4" "windows-1251"
"EUC-JP" "IS0-8859-5" "windows-1252"
"EUC-TW" "IS0-8859-6" "windows-1253"
"GB18030" "IS0-8859-7" "windows-1254"
"GB2312" "IS0-8859-8" "windows-1255"
"GBK" "IS0-8859-9" "windows-1256"
"IBM866" "IS0-8859-11" "windows-1257"
"KOI8-R" "IS0-8859-13" "windows-1258"
"KOI8-U" "IS0-8859-15" "US-ASCII"

"Macintosh" "UTF-8"

"Shift JIS"

If you do not specify an encoding scheme, then the function performs heuristic auto-detection for the
encoding to use. The heuristics depend on your locale. If these heuristics fail, then you must specify

one explicitly.

This option only applies when the input is a plain text file.

Data Types: char | string

ExtractionMethod — Extraction method
"tree' (default) | 'article' | 'all-text'

Extraction method, specified as the comma-separated pair consisting of 'ExtractionMethod' and

one of the following:

Option Description

"tree' Analyze the DOM tree and text contents, then
extract a block of paragraphs.

'article' Detect article text and extract a block of
paragraphs.

'all-text' Extract all text in the HTML body, except for

scripts and CSS styles.

This option supports HTML file input only.

Password — Password to open PDF file
character vector | string scalar

Password to open the PDF file, specified as the comma-separated pair consisting of 'Password' and
a character vector or a string scalar. This option only applies if the input file is a PDF.




extractFileText

Example: 'Password', 'skrowWhtaM'

Data Types: char | string

Pages — Pages to read from PDF file
vector of positive integers

Pages to read from PDF file, specified as the comma-separated pair consisting of 'Pages' and a
vector of positive integers. This option only applies if the input file is a PDF file. The function, by
default, reads all pages from the PDF file.

Example: 'Pages',[1 3 5]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Tips

* Toread text directly from HTML code, use extractHTMLText.

Version History
Introduced in R2017b

R2020b: extractFileText no longer supports extracting text from Microsoft Word 97-2003
binary DOC files
Errors starting in R2020b

Support for extracting text from Microsoft® Word 97-2003 binary DOC files using the
extractFileText function has been removed. Microsoft Word DOCX files will continue to be
supported.

To extract text data from Microsoft Word 97-2003 binary DOC files, first save the file as a PDF,
Microsoft Word DOCX, HTML, or plain text file, then use the extractFileText function.

See Also
pdfinfo | extractHTMLText | readPDFFormData | writeTextDocument | tokenizedDocument

Topics

“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
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extractHTMLText

Extract text from HTML

Syntax

str = extractHTMLText (code)

str = extractHTMLText (tree)

str = extractHTMLText(  ,'ExtractionMethod',ex)

Description

str = extractHTMLText (code) parses the HTML code in code and extracts the text.

str = extractHTMLText (tree) extracts the text from an HTML tree.

str = extractHTMLText(  ,'ExtractionMethod',ex) also specifies the extraction method
to use.

Examples

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the HTML code as
a string.

code = "<html><body><h1>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str =
"THE SONNETS

by William Shakespeare"

Extract Text from Website

To extract the text data from a web page, first use the webread function to read the HTML code.
Then use the extractHTMLText function on the returned code.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);
str = extractHTMLText (code)

str =
'Text Analytics Toolbox

Analyze and model text data

Release Notes
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PDF Documentation

Release Notes

PDF Documentation

Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing
Text Analytics Toolbox includes tools for processing raw text from sources such as equipmen
Using machine learning techniques such as LSA, LDA, and word embeddings, you can find cluste
Get Started

Learn the basics of Text Analytics Toolbox

Text Data Preparation

Import text data into MATLAB® and preprocess it for analysis

Modeling and Prediction

Develop predictive models using topic models and word embeddings

Display and Presentation

Visualize text data and models using word clouds and text scatter plots

Language Support

Information on language support in Text Analytics Toolbox'

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes with element
name "A".

selector
subtrees

IIAII ;
findElement(tree,selector);

View the first few subtrees.
subtrees(1:10)

ans =
10x1 htmlTree:
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<A
<A
<A
<A
<A
<A
<A
<A
<A
<A

class="skip_link sr-only" href="#content container">Skip to content</A>

href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:

//www .
//www .
//www .
//www .
//www .
//www .
//www .
//www .
//www .

mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.

com?s _tid=gn logo" class="svg link navbar-brand"><IMG src="/1iI
com/products.html?s tid=gn ps">Products</A>
com/solutions.html?s tid=gn sol">Solutions</A>
com/academia.html?s tid=gn acad">Academia</A>
com/support.html?s tid=gn supp">Support</A>
com/matlabcentral/?s tid=gn mlc">Community</A>
com/company/events.html?s tid=gn ev">Events</A>
com/products/get-matlab.html?s tid=gn getml">Get MATLAB</A>
com?s_tid=gn logo" class="svg link pull-left"><IMG src="/imag

Extract the text from the subtrees using extractHTMLText. The result contains the link text from

each link on the page.

str =

str(1:10)

ans = 10x1 string
"Skip to content"

"Products"
"Solutions"
"Academia"
“Support"
"Community"
"Events"
"Get MATLAB"

Input Arguments

code — HTML code
string array | character vector | cell array of character vectors

extractHTMLText (subtrees);

HTML code, specified as a string array, character vector, or cell array of character vectors.

Tip

* To read HTML code from a web page, use webread.

¢ To extract text from an HTML file, use extractFileText.

Example: "<a href="https://www.mathworks.com'>MathWorks</a>"

Data Types: char | string | cell

tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.
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ex — Extraction method
‘tree’' (default) | 'article' | "all-text'

Extraction method, specified as one of the following:

Option Description

"tree' Analyze the DOM tree and text contents, then
extract a block of paragraphs.

'article' Detect article text and extract a block of
paragraphs.

'all-text' Extract all text in the HTML body, except for
scripts and CSS styles.

Version History
Introduced in R2018a

See Also

extractFileText | readPDFFormData | writeTextDocument | webread | tokenizedDocument
| htmlTree | pdfinfo

Topics

“Parse HTML and Extract Text Content”
“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
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extractSummary

Extract summary from documents

Syntax

summary = extractSummary(documents)
[summary,scores] = extractSummary(documents)
[summary,scores] = extractSummary(documents,Name,Value)

Description

summary = extractSummary(documents) chooses a subset of the input documents to serve as a
summary, and returns them as a tokenizedDocument array.

[summary,scores] = extractSummary(documents) also returns the importance scores used for
selecting the summary documents. In this case, scores (i) represents the score for summary(i).

[summary,scores] = extractSummary(documents,Name,Value) specifies additional options
using one or more name-value pair arguments.

Examples

Summarize Documents

Create an array of tokenized documents.

str = [
"The quick brown fox jumped over the lazy dog."
"The fox jumped over the dog."
"The lazy dog saw a fox jumping."
"There seem to be animals jumping other animals."
"There are quick animals and lazy animals"];
documents = tokenizedDocument(str);

Extract a summary of the documents using the extractSummary function. The function, by default,
chooses 1/10 of the input documents, rounding up.

summary = extractSummary(documents)

summary =
tokenizedDocument:

10 tokens: The quick brown fox jumped over the lazy dog .

To specify a larger summary, use the 'SummarySize' option. Extract a three-document summary.
summary = extractSummary(documents, 'SummarySize',3)

summary =
3x1 tokenizedDocument:
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10 tokens: The quick brown fox jumped over the lazy dog
7 tokens: The fox jumped over the dog
9 tokens: There seem to be animals jumping other animals

Evaluate Document Importance

Create an array of tokenized documents.

str = [
"The quick brown fox jumped over the lazy dog."
"The fox jumped over the dog."
"The lazy dog saw a fox jumping."
"There seem to be animals jumping over other animals."
"There are quick animals and lazy animals"];
documents = tokenizedDocument(str);

Extract a three-document summary. The second output scores contains the summary document
importance scores.

[summary,scores] = extractSummary(documents, 'SummarySize',3)

summary =
3x1 tokenizedDocument:

10 tokens: The quick brown fox jumped over the lazy dog
10 tokens: There seem to be animals jumping over other animals
7 tokens: The fox jumped over the dog

scores = 3x1

0.2426
0.2174
0.1911

Visualize the scores in a bar chart.

figure

bar(scores)

xLlabel("Summary Document")
ylabel("Score")

title("Summary Document Importance")
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Sentence Level Summarization

To summarize a single document, split the document into an array of sentences, and use the
extractSummary function.

Create a string scalar containing the document.

str = ...
"There is a quick fox. The fox is brown. There is a dog which " + ...
"is lazy. The dog is very lazy. The fox jumped over the dog. " + ...
"The quick brown fox jumped over the lazy dog.";

Split the string into sentences using the splitSentences function.

str splitSentences(str)
str = 6x1 string
"There is a quick fox."
"The fox is brown."
"There is a dog which is lazy."
"The dog is very lazy."
"The fox jumped over the dog."
"The quick brown fox jumped over the lazy dog."
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Create a tokenized document array containing the sentences.

documents

tokenizedDocument (str)

documents =
6x1 tokenizedDocument:

6 tokens: There is a quick fox .

5 tokens: The fox 1is brown

8 tokens: There is a dog which is lazy .

6 tokens: The dog is very lazy .

7 tokens: The fox jumped over the dog

10 tokens: The quick brown fox jumped over the lazy dog

Extract a summary from the sentences using the extractSummary function. To return a summary
withthree documents, set the 'SummarySize' option to 3.To ensure the summary documents appear
in the same order as the input documents, set the 'OrderBy' option to 'position’.

summary = extractSummary(documents, 'SummarySize',3,'OrderBy', 'position')

summary =
3x1 tokenizedDocument:

6 tokens: There is a quick fox .

7 tokens: The fox jumped over the dog
10 tokens: The quick brown fox jumped over the lazy dog

To reconstruct the sentences into a single document, convert the documents to string using the
joinWords function and join the sentences using the join function.

sentences = joinWords(summary) ;
summaryStr = join(sentences)

summaryStr =
"There is a quick fox . The fox jumped over the dog . The quick brown fox jumped over the lazy d

To remove the surrounding punctuation characters, use the replace function.

punctuationRight = [II-II II’II nrn II)II II:II II?II n ! II] ;

summaryStr = replace(summaryStr," " + punctuationRight,punctuationRight);
punctuationLeft = ["(" "‘"];

summaryStr = replace(summaryStr,punctuationLeft + " ",punctuationLeft)

summaryStr =
"There is a quick fox. The fox jumped over the dog. The quick brown fox jumped over the lazy dog

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: extractSummary(documents, 'ScoringMethod', 'lexrank') extracts a summary
from documents and sets the scoring method option to ' lexrank'.

ScoringMethod — Scoring method
"textrank' (default) | 'lexrank' | "mmr'

Scoring method used for extractive summarization, specified as the comma-separated pair consisting
of 'ScoringMethod' and one of the following:

* ‘'textrank' - Use the TextRank algorithm.

* ‘'lexrank' - Use the LexRank algorithm.

 'mmr' - Usethe MMR algorithm.

Query — Query document for MMR scoring
tokenizedDocument scalar | string array | cell array of character vectors

Query document for MMR scoring, specified as the comma-separated pair consisting of 'Query' and
a tokenizedDocument scalar, a string array of words, or a cell array of character vectors. If
"Query' not a tokenizedDocument scalar, then it must be a row vector representing a single
document, where each element is a word.

This option only has an effect when 'ScoringMethod' is 'mmr"'.

SummarySize — Size of summary
0.1 (default) | scalar in the range (0,1) | positive integer | Inf

Size of summary, specified as the comma-separated pair consisting of 'SummarySize' and one of the
following:

* Scalar in the range (0,1) - Extract the specified proportion of input documents, rounding up. In
this case, the number of summary documents ceil (SummarySize*numDocuments), where
numDocuments is the number of input documents.

* Positive integer - Extract a summary with the specified number of documents. If SummarySize is
greater than or equal to the number of input documents, then the function returns the input
documents sorted according to the 'OrderBy' option.

Inf - Return the input documents sorted according to the 'OrderBy' option.
Data Types: double

OrderBy — Order of documents in summary
'score' (default) | 'position'’

Order of documents in summary, specified as the comma-separated pair consisting of 'OrderBy' and
one of the following:
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* 'score' - Order documents by their score according to the 'ScoringMethod' option.
* 'position' - Maintain the document order from the input.

Output Arguments

summary — Extracted summary
tokenizedDocument array

Extracted summary, returned as a tokenizedDocument array. The summary is a subset of
documents, and is sorted according to the 'OrderBy' option.

scores — Summary document scores
vector

Summary document scores, returned as a vector, where scores (i) is the score of the jth summary
document according to the 'ScoringMethod' option. The scores are sorted according to the
'OrderBy' option.

Version History
Introduced in R2020a

See Also

tokenizedDocument | bleuEvaluationScore | rougeEvaluationScore | bm25Similarity |
cosineSimilarity | textrankScores | lexrankScores | mmrScores | rakeKeywords |
textrankKeywords

Topics

“Extract Keywords from Text Data Using TextRank”
“Extract Keywords from Text Data Using RAKE”
“Sequence-to-Sequence Translation Using Attention”
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fastTextWordEmbedding

Pretrained fastText word embedding

Syntax

emb = fastTextWordEmbedding

Description

emb = fastTextWordEmbedding returns a 300-dimensional pretrained word embedding for 1
million English words.

This function requires the Text Analytics Toolbox Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, the function provides a
download link.

Examples

Download fastText Support Package

Download and install the Text Analytics Toolbox Model for fastText English 16 Billion Token Word
Embedding support package.

Type fastTextWordEmbedding at the command line.
fastTextWordEmbedding

If the Text Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding support
package is not installed, then the function provides a link to the required support package in the Add-
On Explorer. To install the support package, click the link, and then click Install. Check that the
installation is successful by typing emb = fastTextWordEmbedding at the command line.

emb = fastTextWordEmbedding
emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

If the required support package is installed, then the function returns a wordEmbedding object.

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.
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emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb, "Rome");
paris = word2vec(emb, "Paris");

Map the vector italy - rome + paris to a word using vec2word.
word = vec2word(emb,italy - rome + paris)

word =
"France"

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained word
embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The doc2sequence
function, by default, left-pads the sequences to have the same length. When converting large
collections of documents using a high-dimensional word embedding, padding can require large
amounts of memory. To prevent the function from padding the data, set the 'PaddingDirection’
option to 'none’. Alternatively, you can control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents, 'PaddingDirection', 'none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence.

sequences(1:10)
ans=10x1 cell array

{300x10 single}
{300x11 single}
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{300x11 single}
{300x6 single}
{300x5 single}
{300x10 single}
{300x8 single}
{300x9 single}
{300x7 single}
{300x13 single}

Output Arguments

emb — Pretrained word embedding
wordEmbedding object

Pretrained word embedding, returned as a wordEmbedding object.

Version History
Introduced in R2018a

See Also

wordEncoding | doc2sequence | wordEmbeddinglLayer | word2vec | vec2word |
isVocabularyWord | readWordEmbedding | trainWordEmbedding | wordEmbedding |
tokenizedDocument

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Classify Documents Using Document Embeddings”
“Prepare Text Data for Analysis”
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Find elements in HTML tree

Syntax

subtrees = findElement(tree,selector)

Description

subtrees = findElement(tree,selector) returns the elements in tree matching the CSS
selector.

Examples

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes with element
name "A".

selector
subtrees

IIAII ;
findElement(tree,selector);

View the first few subtrees.
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="skip link sr-only" href="#content container">Skip to content</A>

<A href="https://www.mathworks.com?s tid=gn_ logo" class="svg link navbar-brand"><IMG src="/1il
<A href="https://www.mathworks.com/products.html?s tid=gn ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn_ supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s tid=gn mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn_ev">Events</A>

<A href="https://www.mathworks.com/products/get-matlab.html?s tid=gn getml">Get MATLAB</A>
<A href="https://www.mathworks.com?s tid=gn logo" class="svg link pull-left"><IMG src="/imag
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Extract the text from the subtrees using extractHTMLText. The result contains the link text from
each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10x1 string
"Skip to content"

"Products"
"Solutions"
"Academia"
“Support"
"Community"
"Events"
"Get MATLAB"

Input Arguments

tree — HTML tree
scalar htmlTree object

HTML tree, specified as a scalar htmlTree object.

selector — CSS selector
string scalar | character vector

CSS selector, specified as a string scalar or a character vector. For more information, see “CSS
Selectors” on page 2-177.

Output Arguments

subtrees — Matching HTML subtrees
htmlTree array

Matching HTML subtrees, returned as an htmlTree array.

More About
HTML Elements

A typical HTML element contains the following components:
* Element name - Name of the HTML tag. The element name corresponds to the Name property of
the HTML tree.

* Attributes - Additional information about the tag. HTML attributes have the form name="value",
where name and value denote the attribute name and value respectively. The attributes appear
inside the opening HTML tag. To get the attribute values from an HTML tree, use getAttribute.

* Content - Element content. The content appears between opening and closing HTML tags. The
content can be text data or nested HTML elements. To extract the text from an htmlTree object,
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use extractHTMLText. To get the nested HTML elements of an htmlTree object, use the

Children property.

For example, the HTML element <a href="https://www.mathworks.com">Home</a> comprises

the following components:

Component Value Description
Element name a Element is a hyperlink
Attribute Attribute name href Hyperlink reference
Attribute value "https:// Hyperlink reference
www .mathworks.com" |value
Content Home Text to display

CSS Selectors

CSS selectors specify patterns to match elements in a tree.

This table shows some examples showing how to extract different HTML elements from an HTML

tree:

Task

CSS Selector

Example

elements that are inside table
(<table>) elements.

Find all paragraph (<p>) ‘p" findElement (tree,"p")
elements.

Find all paragraph (<p>) and "p,li" findElement(tree,"p,1i")
list item (<1i>) elements.

Find all paragraph (<p>) "table p" findElement(tree, "table

p")

Find all hyperlink (<a>)
elements with hyperlink
reference attribute (href)
values ending with " .pdf".

Ila[href$=ll n . pdfll II] n

findElement (tree, "al[href
$=II n . pdfll n ] II)

Find all paragraph (<p>)
elements that are the first child
of their parent.

"p:first-child"

findElement (tr,"p:first-
child")

Find all paragraph (<p>)
elements that are the first
paragraph element of their
parent.

"p:first-of-type"

findElement(tr,"p:first-
of-type")

Find all emphasis (<em>)
elements where the parent is a
paragraph (<p>) element.

||p > em"

findElement(tr,"p > em")

Find all paragraph (<p>)
elements appearing immediately
after a heading 1 (<h1>)
element

Ilhl + pll

findElement(tr,"hl + p")

Find all empty elements.

“rempty"

findElement(tr,":empty")
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Task

CSS Selector

Example

Find all nonempty label
(<label>) elements.

"label:not(:empty)"

findElement (tr, "label:no
t(:empty)")

The findElement function supports all of CSS level 3, except for the selectors ":1lang",
":checked", ":1ink", ":active", ":hover", ":focus", ":target", ":enabled", and

":disabled".

For more information about CSS selectors, see [1].

Version History
Introduced in R2018b

References

[1]1 CSS Selector Reference. https://www.w3schools.com/cssref/css _selectors.php

See Also

extractFileText | extractHTMLText | readPDFFormData | htmlTree | getAttribute |
ismissing | tokenizedDocument

Topics

“Parse HTML and Extract Text Content”

“Extract Text Data from Files”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
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Fit latent Dirichlet allocation (LDA) model

Syntax

md1l
md1l
md1l

fitlda(bag,numTopics)
fitlda(counts,numTopics)
fitlda( ,Name, Value)

Description

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. If the model was fit using a bag-of-n-
grams model, then the software treats the n-grams as individual words.

mdl = fitlda(bag,numTopics) fits an LDA model with numTopics topics to the bag-of-words or
bag-of-n-grams model bag.

mdl = fitlda(counts,numTopics) fits an LDA model to the documents represented by a matrix
of frequency counts.

mdl = fitlda( ,Name, Value) specifies additional options using one or more name-value pair
arguments.

Examples

Fit LDA Model

To reproduce the results in this example, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag bagOfWords (documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]

2-179



2 Functions

2-180

Vocabulary: ["fairest" "creatures" "desire" "increase" "thereby"
NumWords: 3092
NumDocuments: 154
Fit an LDA model with four topics.
numTopics = 4;
mdl = fitlda(bag,numTopics)
Initial topic assignments sampled in 0.164306 seconds.
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
[ | (seconds) | log(L) | | iterations |
[ 0 | 0.04 | | 1.215e+03 | 1.000 | 0 |
[ 1| 0.02 | 1.0482e-02 | 1.128e+03 | 1.000 | 0 |
| 2 | 0.01 | 1.7190e-03 | 1.115e+03 | 1.000 | 0 |
[ 3 0.02 | 4.3796e-04 | 1.118e+03 | 1.000 | 0 |
[ 4 | 0.01 | 9.4193e-04 | 1.111e+03 | 1.000 | 0 |
[ 5| 0.02 | 3.7079e-04 | 1.108e+03 | 1.000 | 0 |
[ 6 | 0.01 | 9.5777e-05 | 1.107e+03 | 1.000 | 0 |
mdl =
ldaModel with properties:
NumTopics: 4
WordConcentration: 1
TopicConcentration: 1
CorpusTopicProbabilities: [0.2500 0.2500 0.2500 0.2500]
DocumentTopicProbabilities: [154x4 double]
TopicWordProbabilities: [3092x4 double]
Vocabulary: ["fairest" "creatures" "desire" "increase"
TopicOrder: 'initial-fit-probability'

FitInfo:

[1x1 struct]

Visualize the topics using word clouds.

figure

for topicldx = 1:4
subplot(2,2,topicIdx)
wordcloud(mdl, topicIdx);
title("Topic: " + topicldx

end

)

"beautys"

"thereby"
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Topic: 1
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To reproduce the results of this example, set rng to 'default’.

rng('default"')

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets. The value counts (i, j) corresponds

to the number of times the jth word of the vocabulary appears in the ith document.

load sonnetsCounts.mat
size(counts)

ans = 1x2

154 3092

Fit an LDA model with 7 topics. To suppress the verbose output, set 'Verbose' to 0.

numTopics = 7;
mdl = fitlda(

counts,numTopics,

'Verbose',0);
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Visualize multiple topic mixtures using stacked bar charts. Visualize the topic mixtures of the first
three input documents.

topicMixtures = transform(mdl,counts(1:3,:));

figure

barh(topicMixtures, 'stacked")

xlim([0 1])

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic "+ string(l:numTopics), 'Location', 'northeastoutside")

Topic Mixtures

I Topic 1
I Topic 2
[ ]Topic3
I Topic 4
[ Topic s
] Topicé
I Topic 7

Document

0 0.2 04 0.6 0.8 1
Topic Probability

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);
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Create a bag-of-words model using bag0fWords.

bag = bag0OfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: ["fairest" "creatures” "desire" "increase" “"thereby" "beautys”
NumWords: 3092
NumDocuments: 154
Fit an LDA model with 20 topics.
numTopics = 20;
mdl = fitlda(bag,numTopics)
Initial topic assignments sampled in 0.106969 seconds.
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 1.13 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.05 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.06 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.06 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.06 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5] 0.05 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.05 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =
ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: ["fairest" "creatures" "desire" "increase" "thereby"
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument ([

"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."]);

topicIdx = predict(mdl,newDocuments)
topicIdx = 2x1

19
8
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Visualize the predicted topics using word clouds.

figure

subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
title("Topic " + topicIdx(1))
subplot(1,2,2)

wordcloud(mdl, topicIdx(2));
title("Topic " + topicIdx(2))
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Input Arguments

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0OfNgrams
object. If bag is a bag0fNgrams object, then the function treats each n-gram as a single word.

numTopics — Number of topics
positive integer

Number of topics, specified as a positive integer. For an example showing how to choose the number
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of topics, see “Choose Number of Topics for LDA Model”.

Example: 200
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' tobe 'rows', then the value counts (i, j) corresponds to the number of times the

jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Solver', "avb' specifies to use approximate variational Bayes as the solver.

Solver Options

Solver — Solver for optimization
'cgs' (default) | 'savb' | 'avb' | 'cvb0'

Solver for optimization, specified as the comma-separated pair consisting of 'Solver' and one of the
following:

Stochastic Solver

* 'savb' - Use stochastic approximate variational Bayes [1] [2]. This solver is best suited for large
datasets and can fit a good model in fewer passes of the data.

Batch Solvers

* 'cgs' - Use collapsed Gibbs sampling [3]. This solver can be more accurate at the cost of taking
longer to run. The resume function does not support models fitted with CGS.

* 'avb' - Use approximate variational Bayes [4]. This solver typically runs more quickly than
collapsed Gibbs sampling and collapsed variational Bayes, but can be less accurate.

* 'cvb0O' - Use collapsed variational Bayes, zeroth order [4] [5]. This solver can be more accurate
than approximate variational Bayes at the cost of taking longer to run.

For an example showing how to compare solvers, see “Compare LDA Solvers”.
Example: 'Solver', 'savb'’

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001

FitTopicProbabilities — Option for fitting corpus topic probabilities
true (default) | false
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Option for fitting topic concentration, specified as the comma-separated pair consisting of
'"FitTopicConcentration' and either true or false.

The function fits the Dirichlet prior a = ag(p1 P2 - Pk) on the topic mixtures, where g is the topic
concentration and py, ..., px are the corpus topic probabilities which sum to 1.
Example: 'FitTopicProbabilities', false

Data Types: logical

FitTopicConcentration — Option for fitting topic concentration
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'"FitTopicConcentration' and either true or false.

For batch the solvers 'cgs', 'avb', and 'cvb0', the default for FitTopicConcentrationis true.
For the stochastic solver 'savb', the default is false.

The function fits the Dirichlet prior a = ag(p1 P2 - Pk) on the topic mixtures, where g is the topic
concentration and py, ..., px are the corpus topic probabilities which sum to 1.

Example: 'FitTopicConcentration', false

Data Types: logical

InitialTopicConcentration — Initial estimate of the topic concentration
numTopics/4 (default) | nonnegative scalar

Initial estimate of the topic concentration, specified as the comma-separated pair consisting of
'InitialTopicConcentration' and a nonnegative scalar. The function sets the concentration per
topic to TopicConcentration/NumTopics. For more information, see “Latent Dirichlet Allocation”
on page 2-189.

Example: 'InitialTopicConcentration',25

TopicOrder — Topic Order
"initial-fit-probability' (default) | 'unordered’

Topic order, specified as one of the following:

e« ‘'initial-fit-probability' - Sort the topics by the corpus topic probabilities of input
document set (the CorpusTopicProbabilities property).

* ‘'unordered' - Do not sort the topics.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as the comma-separated pair consisting of 'WordConcentration'
and a nonnegative scalar. The software sets the Dirichlet prior on the topics (the word probabilities
per topic) to be the symmetric Dirichlet distribution parameter with the value WordConcentration/
numWords, where numWords is the vocabulary size of the input documents. For more information, see
“Latent Dirichlet Allocation” on page 2-189.

DocumentsIn — Orientation of documents
"rows' (default) | ' columns'
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Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* ‘'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns', then you might experience a significant reduction in optimization-
execution time.

Batch Solver Options

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.

This option supports batch solvers only (' cgs', 'avb', or 'cvb0').
Example: 'IterationLimit', 200
Stochastic Solver Options

DataPassLimit — Maximum number of passes through data
1 (default) | positive integer

Maximum number of passes through the data, specified as the comma-separated pair consisting of
'DataPassLimit' and a positive integer.

If you specify 'DataPassLimit' but not 'MiniBatchLimit', then the default value of
'MiniBatchLimit' is ignored. If you specify both 'DataPassLimit' and 'MiniBatchLimit’',
then fitlda uses the argument that results in processing the fewest observations.

This option supports only the stochastic (' savb') solver.

Example: 'DataPassLimit’',?2

MiniBatchLimit — Maximum number of mini-batch passes
positive integer

Maximum number of mini-batch passes, specified as the comma-separated pair consisting of
'MiniBatchLimit' and a positive integer.

If you specify 'MiniBatchLimit' but not 'DataPassLimit’, then fitlda ignores the default
value of 'DataPassLimit'. If you specify both 'MiniBatchLimit' and 'DataPassLimit’', then
fitlda uses the argument that results in processing the fewest observations. The default value is
ceil(numDocuments/MiniBatchSize), where numDocuments is the number of input documents.
This option supports only the stochastic (' savb') solver.

Example: 'MiniBatchLimit',b 200
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MiniBatchSize — Mini-batch size
1000 (default) | positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'MiniBatchLimit"' and a
positive integer. The function processes MiniBatchSize documents in each iteration.

This option supports only the stochastic (' savb') solver.

Example: 'MiniBatchSize',512

LearnRateDecay — Learning rate decay
0.5 (default) | positive scalar less than or equal to 1

Learning rate decay, specified as the comma-separated pair 'LearnRateDecay' and a positive
scalar less than or equal to 1.

For mini-batch t, the function sets the learning rate to n(t) = 1/(1 + t)%, where k is the learning rate
decay.

If LearnRateDecay is close to 1, then the learning rate decays faster and the model learns mostly
from the earlier mini-batches. If LearnRateDecay is close to 0, then the learning rate decays slower
and the model continues to learn from more mini-batches. For more information, see “Stochastic
Solver” on page 2-191.

This option supports the stochastic solver only (' savb').

Example: 'LearnRateDecay',0.75
Display Options

ValidationData — Validation data
[1 (default) | bagOfWords object | bagOfNgrams ohject | sparse matrix of word counts

Validation data to monitor optimization convergence, specified as the comma-separated pair
consisting of 'ValidationData' and a bagOfWords object, a bagOfNgrams object, or a sparse
matrix of word counts. If the validation data is a matrix, then the data must have the same orientation
and the same number of words as the input documents.

ValidationFrequency — Frequency of model validation
positive integer

Frequency of model validation in number of iterations, specified as the comma-separated pair
consisting of 'ValidationFrequency' and a positive integer.

The default value depends on the solver used to fit the model. For the stochastic solver, the default
value is 10. For the other solvers, the default value is 1.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one of the
following:

* 0 - Do not display verbose output.
* 1 - Display progress information.
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Example: 'Verbose',0

Output Arguments

mdl — Output LDA model
ldaModel object

Output LDA model, returned as an LdaModel object.

More About

Latent Dirichlet Allocation

A latent Dirichlet allocation (LDA) model is a document topic model which discovers underlying topics
in a collection of documents and infers word probabilities in topics. LDA models a collection of D
documents as topic mixtures 04, ..., Op, over K topics characterized by vectors of word probabilities

@1, ..., . The model assumes that the topic mixtures 0, ..., 8p, and the topics ¢, ..., px follow a
Dirichlet distribution with concentration parameters a and f respectively.

The topic mixtures 0, ..., 6p are probability vectors of length K, where K is the number of topics. The
entry 0g; is the probability of topic i appearing in the dth document. The topic mixtures correspond to
the rows of the DocumentTopicProbabilities property of the ldaModel object.

The topics ¢, ..., px are probability vectors of length V, where V is the number of words in the
vocabulary. The entry ¢;, corresponds to the probability of the vth word of the vocabulary appearing
in the ith topic. The topics @i, ..., @x correspond to the columns of the TopicWordProbabilities
property of the LdaModel object.

Given the topics ¢y, ..., @x and Dirichlet prior a on the topic mixtures, LDA assumes the following
generative process for a document:

1 Sample a topic mixture 6~Dirichlet(a). The random variable 0 is a probability vector of length K,
where K is the number of topics.

2 For each word in the document:

a Sample a topic index z~Categorical(f). The random variable z is an integer from 1 through
K, where K is the number of topics.
b  Sample a word w~Categorical(¢,). The random variable w is an integer from 1 through V,

where V is the number of words in the vocabulary, and represents the corresponding word in
the vocabulary.

Under this generative process, the joint distribution of a document with words wy, ..., wy, with topic
mixture 6, and with topic indices z1, ..., 2y is given by

N
a) ] plz,

n=1

p6,z,wia, p) = p(d 0)p(wy |zn, @),

where N is the number of words in the document. Summing the joint distribution over z and then
integrating over 6 yields the marginal distribution of a document w:
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The following diagram illustrates the LDA model as a probabilistic graphical model. Shaded nodes are

observed variables, unshaded nodes are latent variables, nodes without outlines are the model

parameters. The arrows highlight dependencies between random variables and the plates indicate

repeated nodes.

D

. "y

Dirichlet Distribution

The Dirichlet distribution is a continuous generalization of the multinomial distribution. Given the
number of categories K = 2, and concentration parameter a, where a is a vector of positive reals of
length K, the probability density function of the Dirichlet distribution is given by

K

1 aj—1
p(9|a)—m_ ] o; )

i=1

where B denotes the multivariate Beta function given by

K

A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The symmetric
Dirichlet distribution is characterized by the concentration parameter a, where all the elements of a
are the same.
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Stochastic Solver

The stochastic solver processes documents in mini-batches. It updates the per-topic word
probabilities using a weighted sum of the probabilities calculated from each mini-batch, and the
probabilities from all previous mini-batches.

For mini-batch t, the solver sets the learning rate to n(t) = 1/(1 + t)*, where k is the learning rate
decay.

The function uses the learning rate decay to update @, the matrix of word probabilities per topic, by
setting

o = (1 - o~ +nwo”,

where ™) is the matrix learned from mini-batch t, and o~V is the matrix learned from mini-
batches 1 through t-1.

Before learning begins (when t = 0), the function initializes the initial word probabilities per topic
@ with random values.

Version History
Introduced in R2017b

R2018b: fitlda sorts topics
Behavior changed in R2018b

Starting in R2018b, fitlda, by default, sorts the topics in descending order of the topic probabilities
of the input document set. This behavior makes it easier to find the topics with the highest
probabilities.

In previous versions, fitlda does not change the topic order. To reproduce the behavior, set the
'"TopicOrder' optionto 'unordered’.
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[2] Hoffman, Matthew D., David M. Blei, Chong Wang, and John Paisley. "Stochastic variational
inference." The Journal of Machine Learning Research 14, no. 1 (2013): 1303-1347.

[3] Griffiths, Thomas L., and Mark Steyvers. "Finding scientific topics." Proceedings of the National
academy of Sciences 101, no. suppl 1 (2004): 5228-5235.

[4] Asuncion, Arthur, Max Welling, Padhraic Smyth, and Yee Whye Teh. "On smoothing and inference

for topic models." In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pp. 27-34. AUAI Press, 2009.

2-191



2 Functions

[5] Teh, Yee W,, David Newman, and Max Welling. "A collapsed variational Bayesian inference
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See Also
logp | predict | resume | topkwords | transform | wordcloud | fitlsa | bagOfWords |
ldaModel | LsaModel | bag0fNgrams

Topics

“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”
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fitlsa

Fit LSA model

Syntax

mdl = fitlsa(bag,numComponents)
mdl = fitlsa(counts,numComponents)
mdl = fitlsa(  ,Name,Value)
Description

A latent semantic analysis (LSA) model discovers relationships between documents and the words
that they contain. An LSA model is a dimensionality reduction tool useful for running low-dimensional
statistical models on high-dimensional word counts. If the model was fit using a bag-of-n-grams
model, then the software treats the n-grams as individual words.

mdl = fitlsa(bag,numComponents) fits an LSA model with numComponents components to the
bag-of-words or bag-of-n-grams model bag.

mdl = fitlsa(counts,numComponents) fits an LSA model to the documents represented by the
matrix of word counts counts.

mdl = fitlsa( ,Name, Value) specifies additional options using one or more name-value pair
arguments.

Examples

Fit LSA Model
Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
bag = bag0fWords(documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]
Vocabulary: ["fairest" "creatures" "desire" "increase" "thereby" "beautys"

2-193



2 Functions

2-194

NumWords: 3092
NumDocuments: 154

Fit an LSA model with 20 components.

numComponents = 20;

mdl = fitlsa(bag,numComponents)

mdl =
lsaModel with properties:

NumComponents:
ComponentWeights:
DocumentScores:
WordScores:

Vocabulary:
FeatureStrengthExponent:

20

[2.7866e+03 515.5889 443.6428 316.4191 295.4065 261.8927 226.1649 1!
[154x20 double]

[3092x20 double]

["fairest" "creatures" "desire" "increase" "thereby"

2

Transform new documents into lower dimensional space using the LSA model.

newDocuments = tokenizedDocument ([
"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."]);

dscores = transform(mdl,newDocuments)

dscores = 2x20

0.1338 0.1623 0.1680 -0.0541 -0.2464 -0.0134 0.2604 -0.0205 -0.1127
0.2547 0.5576 -0.0095 0.5660 -0.0643 -0.1236 -0.0082 0.0522 0.0690 -

[oNo)

Fit LSA Model to Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts corresponding to
preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1Ix2

154 3092

Fit LSA model with 20 components. Set the feature strength exponent to 4.

numComponents = 20;
exponent = 4;

mdl = fitlsa(counts,numComponents,
'FeatureStrengthExponent',exponent)

mdl =
lsaModel with properties:
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NumComponents: 20
ComponentWeights: [
DocumentScores: [154x20 double]
WordScores: [3092x20 double]
Vocabulary: ["1" "2 "3" 4" "5 "6" A "8 g
FeatureStrengthExponent: 4

Input Arguments

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.

numComponents — Number of components
positive integer

Number of components, specified as a positive integer. This value must be less than the number of
the input documents, and the vocabulary size of the input documents.
Example: 200

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' tobe 'rows', then the value counts (i, j) corresponds to the number of times the

jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'FeatureStrengthExponent',4 sets the feature strength exponent to 4.

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn’' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* 'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.
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Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns', then you might experience a significant reduction in optimization-
execution time.

FeatureStrengthExponent — Initial feature strength exponent
2 (default) | nonnegative scalar

Initial feature strength exponent, specified as a nonnegative scalar. This value scales the feature
component strengths for the documentScores, wordScores, and transform functions.

Example: 'FeatureStrengthExponent', 4

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Output Arguments

mdl — Output LSA model
lsaModel object

Output LSA model, returned as an 1saModel object.

Version History
Introduced in R2017b

See Also
fitlda | transform | bag0fWords | ldaModel | LsaModel | bagOfNgrams

Topics

“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”
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getAttribute

Read HTML attribute of root node of HTML tree

Syntax

str = getAttribute(tree,attr)

Description

str = getAttribute(tree,attr) returns the attribute attr of the root node of tree. If that
attribute is not set, then the function returns a missing value.

Examples

Get Attribute of HTML Tag

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are the nodes with
element name "A".

selector "A";
subtrees findElement(tree,selector);
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="svg_link navbar-brand" href="https://www.mathworks.com?s tid=gn logo"><IMG alt="Ma
<A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathworks.com/
<A href="https://www.mathworks.com/products.html?s tid=gn ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s tid=gn mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn _ev">Events</A>

<A href="https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn cntus">Contact U
<A href="https://www.mathworks.com/store?s cid=store top nav&amp;s tid=gn store">How to Buyx<,

Get the hyperlink references using getAttribute. Specify the attribute name "href".
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attr = "href";
str = getAttribute(subtrees,attr);
str(1:10)

ans = 10x1 string array
"https://www.mathworks.com?s tid=gn logo"

"https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index

"https://www.mathworks.com/products.html?s tid=gn ps"
"https://www.mathworks.com/solutions.html?s tid=gn sol"
"https://www.mathworks.com/academia.html?s tid=gn acad"
"https://www.mathworks.com/support.html?s tid=gn supp"
"https://www.mathworks.com/matlabcentral/?s tid=gn mlc"
"https://www.mathworks.com/company/events.html?s tid=gn ev"
"https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn cntus"
"https://www.mathworks.com/store?s cid=store top nav&s tid=gn store"

Input Arguments

tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.

attr — Attribute name
string scalar | character vector | scalar cell array containing a character vector

Attribute name, specified as a string scalar, character vector, or a scalar cell array containing a
character vector.

Output Arguments

str — HTML attribute
string array

HTML attribute, returned as a string array

More About
HTML Elements

A typical HTML element contains the following components:

* FElement name - Name of the HTML tag. The element name corresponds to the Name property of
the HTML tree.

» Attributes - Additional information about the tag. HTML attributes have the form name="value",
where name and value denote the attribute name and value respectively. The attributes appear
inside the opening HTML tag. To get the attribute values from an HTML tree, use getAttribute.

* Content - Element content. The content appears between opening and closing HTML tags. The
content can be text data or nested HTML elements. To extract the text from an htmlTree object,
use extractHTMLText. To get the nested HTML elements of an htmlTree object, use the
Children property.

.html"
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For example, the HTML element <a href="https://www.mathworks.com">Home</a> comprises
the following components:

Component Value Description
Element name a Element is a hyperlink
Attribute Attribute name href Hyperlink reference
Attribute value "https:// Hyperlink reference
www .mathworks.com" |value
Content Home Text to display

Version History
Introduced in R2018b

See Also

extractFileText | extractHTMLText | readPDFFormData | htmlTree | findElement |
ismissing | tokenizedDocument

Topics

“Parse HTML and Extract Text Content”
“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

2-199



2 Functions

2-200

hex

Package: textanalytics.unicode

Convert UTF-32 representation to hexadecimal values

Syntax

hexStr = hex(str32)

Description

hexStr = hex(str32) converts the UTF-32 representation str32 to hexadecimal values.

Examples

Convert UTF-32 String Representation to Hexadecimal Values

Convert the string "Hello! [J[7to its Unicode UTF-32 string representation using the
textanalytics.unicode.UTF32 function.

str = "Hello! [;
str32 = textanalytics.unicode.UTF32(str)

str32 =
UTF32 with properties:

Data: [72 101 108 168 111 33 32 128512]

Convert str32 to hexadecimal values using the hex function.
hexStr = hex(str32)

hexStr =
' 0048 0065 006C 006C O0O06F 0021 0020 1F600"

Input Arguments

str32 — UTF-32 string representation
UTF32 array

UTF-32 string representation, specified as a UTF32 array.

Output Arguments

hexStr — Hexadecimal values
string array

Hexadecimal values, returned as a string array.
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The output hexStr is a string array with the same size as str32, where hexStr (i) is a string
containing the hexadecimal values corresponding to the str32 (i) separated by whitespace
characters.

Version History
Introduced in R2021a

See Also

tokenizedDocument | textanalytics.unicode.nfc | textanalytics.unicode.nfd |
textanalytics.unicode.nfkc | textanalytics.unicode.nfkd |
textanalytics.unicode.UTF32 | characterCategories

Topics

“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Language Considerations”
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hmmEntityModel

HMM-based model for named entity recognition (NER)

Description

A hmmEntityModel object is a named entity recognition (NER) model that is based on a hidden
Markov model (HMM).

The addDependencyDetails function automatically detects person names, locations, organizations,
and other named entities in text. If you want to train a custom model that predicts different tags, or
train a model using your own data, then you can use the trainHMMEntityModel function.

Creation

Train a HMM-based NER model using the trainHMMEntityModel function.

Properties

Entities — Named entities
categorical array

Named entities, specified as categorical array.

Data Types: categorical

Object Functions
predict Predict entities using named entity recognition (NER) model

Examples

Train HMM-based NER Model
Read the example entity data from exampleEntities. csv into a table.
tbl = readtable("exampleEntities.csv",TextType="string");

View the first few rows of the table. The table has two columns Token and Entity that correspond to
the token and entities, respectively.

head(tbl)
Token Entity
"Analyze" "non-entity"
"text" "non-entity"
"in" "non-entity"
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"MATLAB" "product"
"using" "non-entity"
"Text Analytics Toolbox" "product"
o "non-entity"
"Engineers"” "non-entity"

Train an HMM-based NER model using the trainHMMEntityModel function.
mdl = trainHMMEntityModel(tbl)

mdl =
hmmEntityModel with properties:

Entities: [3x1 categorical]

View the entities of the model.
mdl.Entities

ans = 3x1 categorical
organization
product
non-entity

To add entity details to documents using the trained hmmEntityModel object, use the
addEntityDetails function and set the Model option to the trained NER model.

Create a tokenized document containing text data.

str = "MathWorks develops MATLAB and Simulink.";
document = tokenizedDocument(str);

Add entity details using the trained hmmEntityModel object and view the updated token details
using the tokenDetails function. The Entity column contains the predicted entities.

document = addEntityDetails(document,Model=mdl);
details = tokenDetails(document)

details=6x8 table

Token DocumentNumber SentenceNumber LineNumber Type Language
"MathWorks" 1 1 1 letters en
"develops" 1 1 1 letters en
"MATLAB" 1 1 1 letters en
"and" 1 1 1 letters en
"Simulink" 1 1 1 letters en
o 1 1 1 punctuation en

Extract the tokens that are named entities.

idx = details.Entity ~= "non-entity";
details(idx, ["Token" "Entity"])

ans=3x2 table
Token Entity
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"MathWorks" organization
"MATLAB" product
"Simulink" product

Version History
Introduced in R2023a

See Also

tokenizedDocument | addDependencyDetails | tokenDetails | trainHMMEntityModel
Topics

“Train Custom Named Entity Recognition Model”

“Prepare Text Data for Analysis”
“Analyze Sentiment in Text”
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htmiTree

Parsed HTML tree

Description

An htmlTree object represents a parsed HTML element or node. Extract parts of interest using the
findElement function or the Children property, and extract text using the extractHTMLText
function.

Creation

Syntax
tree = htmlTree(code)
Description

tree = htmlTree(code) parses the HTML code in the string code and returns the resulting tree
structure.

Tip To parse XML code, use the readstruct function.

Input Arguments

code — HTML code
string array | character vector | cell array of character vectors

HTML code, specified as a string array, a character vector, or a cell array of character vectors.

Tip
* Toread HTML code from a web page, use webread.
* To extract text from an HTML file, use extractFileText.

Example: "<a href="https://www.mathworks.com'>MathWorks</a>"
Data Types: char | string | cell
Properties

Children — Direct descendants of element
htmlTree array

Direct descendants of the element, specified as an htmlTree array.
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Parent — Parent node
htmlTree object

Parent node in the tree, specified as an htmlTree object.
If the HTML tree is a root node, then the value of Parent ismissing.

Name — HTML element name
string scalar

HTML element name, specified as a string scalar.

For more information, see “HTML Elements” on page 2-210.

Object Functions

findElement Find elements in HTML tree

getAttribute Read HTML attribute of root node of HTML tree
extractHTMLText Extract text from HTML

ismissing Find HTML trees without values

Examples

Parse HTML Code

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

View the element name of the root node of the tree.
tree.Name

ans =
“HTML"

View the children of the root node.

tree.Children

ans =
4x1 htmlTree:

<HEAD><TITLE>Text Analytics Toolbox Documentation</TITLE><META charset="utf-8"/><META conten

<BODY id="responsive offcanvas"><!-- Mobile TopNav: Start --><DIV class="header visible-xs v.

Extract the text from the HTML tree using extractHTMLText.
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str extractHTMLText (tree)

str =
"Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing

Text Analytics Toolbox includes tools for processing raw text from sources such as equipmen

Using machine learning techniques such as LSA, LDA, and word embeddings, you can find cluste

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes with element
name "A".

selector
subtrees

IIAII;
findElement(tree,selector);

View the first few subtrees.
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="skip link sr-only" href="#content container">Skip to content</A>

<A href="https://www.mathworks.com?s tid=gn logo" class="svg link navbar-brand"><IMG src="/1iI
<A href="https://www.mathworks.com/products.html?s tid=gn ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s tid=gn mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn ev">Events</A>

<A href="https://www.mathworks.com/products/get-matlab.html?s tid=gn getml">Get MATLAB</A>
<A href="https://www.mathworks.com?s tid=gn logo" class="svg link pull-left"><IMG src="/imag

Extract the text from the subtrees using extractHTMLText. The result contains the link text from
each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10x1 string
"Skip to content"

2-207



2 Functions

2-208

"Products"
"Solutions"
"Academia"
"Support"
"Community"
"Events"
"Get MATLAB"

Get Attribute of HTML Tag

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are the nodes with
element name "A".

selector "A";
subtrees findElement(tree,selector);
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="svg link navbar-brand" href="https://www.mathworks.com?s tid=gn logo"><IMG alt="Mar
<A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathworks.com/|
<A href="https://www.mathworks.com/products.html?s tid=gn ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s tid=gn mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn ev">Events</A>

<A href="https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn cntus">Contact U
<A href="https://www.mathworks.com/store?s cid=store top nav&amp;s tid=gn store">How to Buy<,

Get the hyperlink references using getAttribute. Specify the attribute name "href".

attr = "href";
str = getAttribute(subtrees,attr);
str(1:10)

ans = 10x1 string array
"https://www.mathworks.com?s tid=gn_logo"
"https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index.html"
"https://www.mathworks.com/products.html?s tid=gn ps"
"https://www.mathworks.com/solutions.html?s tid=gn sol"
"https://www.mathworks.com/academia.html?s tid=gn acad"
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"https://www.mathworks.com/support.html?s tid=gn supp"
"https://www.mathworks.com/matlabcentral/?s tid=gn mlc"
"https://www.mathworks.com/company/events.html?s tid=gn ev"
"https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn_ cntus"
"https://www.mathworks.com/store?s cid=store top nav&s tid=gn store"

Convert Parsed HTML Code to String

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";

code =

webread(url);

Parse the HTML code using the htmlTree function.

tree =

htmlTree(code);

Find all the paragraphs in the HTML tree using the findElement function. The paragraphs are the
nodes with element name "P".

subtrees

= findElement(tree,"P");

Convert the subtrees to string using the string function.

str = string(subtrees)

str = 26x1 string

||<P

class="hl">a <A href="../index.html" class="coming from product">Documentation</A>« <A

"<P>Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyz
"<P>Text Analytics Toolbox includes tools for processing raw text from sources such as equipi
"<P>Using machine learning techniques such as LSA, LDA, and word embeddings, you can find cli

||<P

class="category desc">Learn the basics of Text Analytics Toolbox</P>"

class="category desc">Import text data into MATLAB<SUP>®</SUP> and preprocess it for ana’
class="category desc">Develop predictive models using topic models and word embeddings</I
class="category desc">Visualize text data and models using word clouds and text scatter |
class="category desc">Information on language support in Text Analytics Toolbox</P>"

"<P>You clicked a link that corresponds to this MATLAB command:</P>"

"<P>Run the command by entering it in the MATLAB Command Window. Web browsers do not support
"<P>Choose a web site to get translated content where available and see local events and off
"<P>You can also select a web site from the following list:</P>"

"<P>Select the China site (in Chinese or English) for best site performance. Other MathWorks

" ep
" ep
" ep
" ep
" ep
" ep
" ep

class="text-center">a <A href="#" class="worldwide link">Contact your local office</A>«
class="ff section title">Explore Products</P>"

class="ff section title">Try or Buy</P>"

class="ff section title">Learn to Use</P>"

class="ff section title">Get Support</P>"

class="ff section title">About <SPAN translate="no">MathWorks</SPAN></P>"

class="h4 add font futura medium add margin 0">« <SPAN translate="no">MathWorks</SPAN>«:

"<P>o <EM>Accelerating the pace of engineering and science</EM>«</P>"
"<P><SPAN translate="no">MathWorks</SPAN> is the leading developer of mathematical computing
"<P>a <A href="/discovery.html?s tid=all disc mw ff">Discover...</A>a</P>"

||<P

class="copyright" translate="no">0 1994-2021 The MathWorks, Inc.</P>"

"<P>a <EM>Join the conversation</EM>a</P>"
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More About
HTML Elements

A typical HTML element contains the following components:

* Element name - Name of the HTML tag. The element name corresponds to the Name property of
the HTML tree.

» Attributes - Additional information about the tag. HTML attributes have the form name="value",
where name and value denote the attribute name and value respectively. The attributes appear
inside the opening HTML tag. To get the attribute values from an HTML tree, use getAttribute.

» Content - Element content. The content appears between opening and closing HTML tags. The
content can be text data or nested HTML elements. To extract the text from an htmlTree object,
use extractHTMLText. To get the nested HTML elements of an htmlTree object, use the
Children property.

For example, the HTML element <a href="https://www.mathworks.com">Home</a> comprises
the following components:

Component Value Description
Element name a Element is a hyperlink
Attribute Attribute name href Hyperlink reference
Attribute value "https:// Hyperlink reference
www.mathworks.com" |value
Content Home Text to display

Version History
Introduced in R2018b

R2021a: htmlTree uses different algorithm for restructuring malformed HTML
Behavior changed in R2021a

When creating an htmlTree object, the software automatically restructures malformed input HTML
code to have valid structure. This restructuring process includes adding, removing, and editing
elements as well as rearranging the tree structure. Starting in R2021a, the software uses an updated
algorithm to restructure malformed HTML. This change can result in htmlTree objects created in
R2021a or later having different size, structure, and content when compared to previous releases.

Starting in R2021a, when loading htmlTree objects from MAT files created in an R2020b or before,
the software automatically restructures the htmlTree object using the same algorithm used for
creating htmlTree objects. When loading htmlTree objects from MAT files created in R2021a or
later, the software does not restructure the htmlTree object.

This table highlights some notable steps of the restructuring process:
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Step Change in Behavior

Automatically add head and title elements. Starting in R2021a, when creating an htmlTree
object from HTML code, the software
automatically inserts missing <HEAD>, <TITLE>,
and other elements. In previous versions, the
htmlTree object only included these elements
when they are present in the input code.

When loading htmlTree objects from MAT files
created in an earlier release, the software
automatically inserts <HEAD> and <TITLE>
elements. When loading htmlTree objects from
MAT files created in R2021a or later, the software
does not automatically insert these elements.

Automatically add missing elements. Starting in R2021a, when creating an htmlTree
object from HTML code, the software
automatically inserts missing elements when
parent and child elements are inconsistent. For
example, when a <li> (list item) element does
not have a parent <ul> (unordered list) or <ol>
(unordered list) element, the software
automatically adds a <ul> element to make the
HTML valid. This can result in different outputs
when compared with earlier releases.

When loading htmlTree objects from MAT files
created in an earlier release, the software
automatically inserts missing elements. When
loading htmlTree objects from MAT files created
in R2021a or later, the software does not
automatically insert missing elements.

Discard parts of malformed code. When creating an htmlTree object with
malformed HTML code, the software may discard
parts of the text. For example, if the input code is
the string "<div>a</", then the software
discards the text "a</".

See Also
extractHTMLText | readPDFFormData | findElement | getAttribute | ismissing |
tokenizedDocument

Topics

“Parse HTML and Extract Text Content”
“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
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ind2word

Map encoding index to word

Syntax

words

Desc

words

= ind2word(enc,M)

ription

= ind2word(enc,M) returns the words corresponding to the encoding indices in M
according to the word encoding enc.

Examples

Map Encoding Indices to Words

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

documents(1:10)

ans =
10x1

70
71
65
71
61
68
64
70
70
69

tokenizedDocument:

tokens: fairest creatures desire increase thereby beautys rose might never die riper time
tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
tokens: look thy glass tell face thou viewest time face form another whose fresh repair tl
tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair
tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial
tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight
tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art beld

Create a word encoding.

enc =

enc =

wordEncoding(documents)

wordEncoding with properties:

Vo

NumWords:
cabulary:

3092
["fairest" "creatures” "desire" "increase" "thereby" "beautys"”



ind2word

View the words corresponding to indices 1, 3, and 5 using the ind2word function.

idx = [1 3 5];
words = ind2word(enc,idx)

words = 1x3 string
"fairest" "desire" "thereby"

Input Arguments

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

M — Word encoding indices
vector of positive integers

Word encoding indices, specified as a vector of positive integers.

Output Arguments

words — Output words
string vector

Output words, returned as a string vector.

Version History
Introduced in R2018b

See Also

fastTextWordEmbedding | doc2sequence | wordEmbeddinglLayer | wordEncoding | word2ind
| vec2word | isVocabularyWord | wordEmbedding | tokenizedDocument

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

2-213



2 Functions

2-214

ismember

(To be removed) Test if word is member of word embedding

Note ismember will be removed in a future release. Use isVocabularyWord instead. For more
information, see “Compatibility Considerations”.

Syntax

tf = ismember(emb,words)

Description

tf = ismember(emb,words) returns an array containing logical 1 (true) where the word in
words is a member of the word embedding emb. Elsewhere, the array contains logical 0 (false).

Examples

Test If Word Is Member of Embedding
Test to determine if words are members of a word embedding.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

Test if the words "I", "love", and "fastTextWordEmbedding" are in the word embedding.

words = ["I" "love" "fastTextWordEmbedding"];
tf = ismember(emb,words)

tf =
1x3 logical array

1 1 0

Input Arguments

emb — Input word embedding
wordEmbedding object
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Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

Version History
Introduced in R2017b

R2018b: ismember will be removed
Warns starting in R2018b

To update your code, for wordEmbedding object input, change the function name from ismember to
isVocabularyWord. You do not need to change the arguments. The syntaxes are equivalent.

See Also

fastTextWordEmbedding | word2vec | vec2word | wordEmbedding | tokenizedDocument |
isVocabularyWord

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
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ismissing
Find HTML trees without values

Syntax

tf = ismissing(tree)

Description

tf = ismissing(tree) returns a logical array that indicates which elements of tree do not
reference HTML trees. For example, if tree is given by the Parent property of a root node, then the
function returns 1 (true).

Examples

Test If HTML Tree Is Root Node
To test if an HTML tree object represents a root node, test that the Parent property is missing.

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

Test if the parent of tree references an HTML tree.
tf = ismissing(tree.Parent)

tf = logical
1

Since tree represents the root node of the HTML tree, the value of tree.Parent ismissing and
the ismissing function returns 1 (true).

Input Arguments

tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.
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Version History
Introduced in R2018b

See Also

extractFileText | extractHTMLText | readPDFFormData | htmlTree | findElement |
getAttribute | tokenizedDocument

Topics

“Parse HTML and Extract Text Content”
“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
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isVocabularyWord

Test if word is member of word embedding or encoding

Syntax

tf = isVocabularyWord(emb,words)

tf = isVocabularyWord(enc,words)
tf = isVocabularyWord( _ , 'IgnoreCase’',true)
Description

tf = isVocabularyWord(emb,words) tests if the elements of words are members of the word
embedding emb. The function returns a logical array containing 1 (true) where the words are
members of the word embedding. Elsewhere, the array contains 0 (false). The function, by default,
is case sensitive.

tf = isVocabularyWord(enc,words) tests if the elements of words are members of the word
encoding enc. The function, by default, is case sensitive.

tf = isVocabularyWord(  ,'IgnoreCase’,true) tests if the specified words are in the
vocabulary ignoring case using any of the previous syntaxes.

Examples

Test If Word Is Member of Embedding
Test to determine if words are members of a word embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x999994 string]

Test if the words "I", "love", and "fastTextWordEmbedding" are in the word embedding.

words = ["I" "love" "fastTextWordEmbedding"];
tf = isVocabularyWord(emb,words)

tf = 1x3 logical array

1 1 0
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Input Arguments

emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

Version History
Introduced in R2018b

See Also

fastTextWordEmbedding | doc2sequence | word2vec | vec2word | wordEmbedding |
tokenizedDocument

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
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join
Combine multiple bag-of-words or bag-of-n-grams models

Syntax

newBag = join(bag)
newBag = join(bag,dim)

Description

newBag = join(bag) combines the elements in the array bag by merging the frequency counts.

The function combines the elements along the first dimension not equal to 1.

newBag = join(bag,dim) combines the elements in the array bag along the dimension dim.

Examples

Combine Bag-of-Words Models

Create an array of two bags-of-words models from tokenized documents.

str = [ .

"an example of a short sentence"
"a second short sentence"];
documents = tokenizedDocument(str);
bag(1) bagO0fWords (documents(1));
bag(2) bagO0fWords (documents(2))

bag=1x2 object
1x2 bagOfWords array with properties:

Counts
Vocabulary
NumWords
NumDocuments

Combine the bag-of-words models using join.

bag join(bag)

bag =
bagOfWords with properties:

Counts: [2x7 double]
Vocabulary: ["an" "example" "of" "a"
NumWords: 7
NumDocuments: 2

"short"

"sentence"

"second"]
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Create Bag-of-Words Model in Parallel

If your text data is contained in multiple files in a folder, then you can import the text data and create
a bag-of-words model in parallel using parfor. If you have Parallel Computing Toolbox™ installed,
then the parfor loop runs in parallel, otherwise, it runs in serial. Use join to combine an array of
bag-of-words models into one model.

Create a list of filenames. The examples sonnets have file names "exampleSonnetN. txt", where N is
the number of the sonnet.

filenames = [
"exampleSonnetl.txt"
"exampleSonnet2.txt"
"exampleSonnet3.txt"
"exampleSonnet4.txt"];

Create a bag-of-words model from a collection of files. Initialize an empty bag-of-words model and
then loop over the files and create a bag-of-words model for each file.

bag = bag0fWords;

numFiles = numel(filenames);
parfor i = l:numFiles
filename = filenames(i);

textData = extractFileText(filename);
document = tokenizedDocument(textData);
bag(i) = bagO0fWords(document);

end

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 20 workers.

Combine the bag-of-words models using join.

bag join(bag)
bag =
bagOfWords with properties:

Counts: [4x276 double]
Vocabulary: ["From" "fairest" "creatures
NumWords: 276
NumDocuments: 4

we "desire" "increase

Input Arguments

bag — Array of bag-of-words or bag-of-n-grams models
bagO0fWords array | bagOfNgrams array

Array of bag-of-words or bag-of-n-grams models, specified as a bag0fWords array or a bagOfNgrams

array. If bag is a bag0fNgrams array, then each element to be joined must have the same value for
the NgramLengths property.
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dim — Dimension along which to join models
positive integer

Dimension along which to join models, specified as a positive integer. If dim is not specified, then the
default is the first dimension with a size that does not equal 1.

Output Arguments

newBag — Output model
bagO0fWords array | bagOfNgrams array

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of newBag is
the same as the type of bag. newBag has the same data type as the input model and has a size of 1
along the dimension being joined.

Version History
Introduced in R2018a

See Also
bagO0fWords | bag0OfNgrams | addDocument | removeDocument | removeEmptyDocuments |
topkwords | topkngrams | encode | tfidf | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”
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joinWords

Convert documents to string by joining words

Syntax

newStr
newStr

joinWords (documents)
joinWords (documents,delim)

Description

newStr = joinWords(documents) converts a tokenizedDocument array to a string array by
joining the words in each document with a space.

newStr = joinWords(documents,delim) joins the words with delimiter delim instead of a
space.

Examples

Convert Documents to String by Joining Words

Convert a tokenizedDocument array to a string array by joining the words with a space.
documents = tokenizedDocument([

"an example of a short sentence"

"a second short sentence"])

documents =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

str

joinWords (documents)
str = 2x1 string

"an example of a short sentence"
"a second short sentence"

Convert a tokenizedDocument array to a string array by joining the words with an underscore.

str

joinWords(documents," ")
str = 2x1 string

"an_example of a short sentence"
"a second short sentence"
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

delim — Delimiter to join words
string scalar | character vector | scalar cell array

Delimiter to join words, specified as a string scalar, character vector, or scalar cell array containing a
character vector.

Example:
Example: ' '
Example: {' '}

Data Types: char | string | cell

Output Arguments

newStr — Output text
string array

Output text, returned as a string array.

Data Types: string

Version History
Introduced in R2017b

See Also
context | doclength | doc2cell | string | tokenizedDocument

Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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knnsearch

Find nearest neighbors by edit distance

Syntax

idx = knnsearch(eds,words)
[idx,d] = knnsearch(eds,words)

[idx,d] = knnsearch(eds,words,Name,Value)

Description

idx = knnsearch(eds,words) finds the indices of the nearest neighbors in the edit distance

searcher eds to each element in words.

[idx,d] = knnsearch(eds,words) also returns the edit distances between the elements of

words and the nearest neighbors.

[idx,d] = knnsearch(eds,words,Name,Value) specifies additional options using one or more

name-value pair arguments.

Examples

Find Nearest Words

Create an edit distance searcher.

vocabulary = ["Text" "Analytics" "Toolbox"];
eds = editDistanceSearcher(vocabulary,?2);

Find the nearest words to "Test" and "Analysis".

words = ["Test" "Analysis"];
idx = knnsearch(eds,words)

idx = 2x1

1
2

Get the words from the vocabulary using the returned indices.

nearestWords = eds.Vocabulary(idx)

nearestWords = Ix2 string
"Text" "Analytics"
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Find Edit Distances to Nearest Words

Create an edit distance searcher.

vocabulary = ["MATLAB" "Text" "Analytics" "Toolbox"];
eds = editDistanceSearcher(vocabulary,?2);

Find the nearest words and their edit distances to "Test" and "Analysis".

words = ["Test" "Analysis"];
[idx,d] = knnsearch(eds,words)
idx = 2x1

2

3
d = 2x1

1

2

Get the words from the vocabulary using the returned indices.

nearestWords = eds.Vocabulary(idx)

nearestWords = 1Ix2 string
"Text" "Analytics"

Changing the word "Test" to "Text" requires one edit: a substitution. Changing the word
"Analysis" into "Analytics" requires two edits: a substitution and an insertion.

Find Multiple Neighbors

Create an edit distance searcher.

vocabulary = ["MathWorks" "MATLAB" "Analytics"];
eds = editDistanceSearcher(vocabulary,5);

Find the two nearest words and their edit distances to "Math" and "Analysis".

words = ["Math" "Analysis"];
idx = knnsearch(eds,words, 'K',2)

idx = 2x2

1 2
3 NaN

View the two closest words to "Math".

idxMath = idx(1,:);
newWords = eds.Vocabulary(idxMath)
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newWords = 1x2 string
"MathWorks" "MATLAB"

There is only one word within the maximum edit distance from "Analysis", so the function returns
NaN for the other indices. View the nearest words with valid indices.

idxAnalysis = idx(2,:);
idxAnalysis(isnan(idxAnalysis)) = [];
newWords = eds.Vocabulary(idxAnalysis)

newWords =
"Analytics”

Input Arguments

eds — Edit distance searcher
editDistanceSearcher

Edit distance searcher, specified as an editDistanceSearcher object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: knnsearch(eds,words, 'K', 3) finds the nearest three neighbors in eds to the elements
of words.

K — Number of nearest neighbors to find
1 (default) | positive integer

Number of nearest neighbors to find for each element in words, specified as a positive integer.
Example: 'K',3
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

IncludeTies — Option to include neighbors whose distance values are equal
false (default) | true

Option to return neighbors whose distance values are equal, specified as true or false.

If 'IncludeTies' is false, then the function returns the K neighbors with the shortest edit
distance, where K is the number of neighbors to find. In this case, the function outputs N-by-K
matrices, where N is the number of input words. To specify K, use the 'K' name-value pair argument.
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If 'IncludeTies' is true, then the function also returns the neighbors whose distances are equal
to the Kth smallest distance in the output. In this case, the function outputs cell arrays of size N-by-1,
where N is the number of input words. The elements of the cell arrays are vectors with at least K
elements. The function sorts the neighbors in each vector in ascending order of distance.

Example: 'IncludeTies', true

Data Types: logical

Output Arguments

idx — Indices of nearest neighbors in searcher
matrix | cell array of vectors

Indices of nearest neighbors in the searcher, returned as a matrix or a cell array of vectors.

If 'IncludeTies' is false, then the function returns the K neighbors with the shortest edit
distance, where K is the number of neighbors to find. In this case, the function outputs N-by-K
matrices, where N is the number of input words. To specify K, use the 'K' name-value pair argument.

If 'IncludeTies' is true, then the function also returns the neighbors whose distances are equal
to the Kth smallest distance in the output. In this case, the function outputs cell arrays of size N-by-1,
where N is the number of input words. The elements of the cell arrays are vectors with at least K
elements. The function sorts the neighbors in each vector in ascending order of distance.

Data Types: double | cell

d — Edit distances to neighbors
matrix | cell array of vectors

Edit distances to neighbors, returned as a matrix or a cell array of vectors.

If 'IncludeTies' is false, then the function returns the K neighbors with the shortest edit
distance, where K is the number of neighbors to find. In this case, the function outputs N-by-K
matrices, where N is the number of input words. To specify K, use the 'K' name-value pair argument.

If 'IncludeTies' is true, then the function also returns the neighbors whose distances are equal
to the Kth smallest distance in the output. In this case, the function outputs cell arrays of size N-by-1,
where N is the number of input words. The elements of the cell arrays are vectors with at least K
elements. The function sorts the neighbors in each vector in ascending order of distance.

Data Types: double | cell

Version History
Introduced in R2019a

See Also
correctSpelling | editDistance | editDistanceSearcher | rangesearch |
splitGraphemes | tokenizedDocument

Topics
“Correct Spelling in Documents”
“Create Extension Dictionary for Spelling Correction”
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“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”
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IdaModel

Latent Dirichlet allocation (LDA) model

Description

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. If the model was fit using a bag-of-n-
grams model, then the software treats the n-grams as individual words.

Creation

Create an LDA model using the fitlda function.

Properties

NumTopics — Number of topics
positive integer

Number of topics in the LDA model, specified as a positive integer.

TopicConcentration — Topic concentration
positive scalar

Topic concentration, specified as a positive scalar. The function sets the concentration per topic to
TopicConcentration/NumTopics. For more information, see “Latent Dirichlet Allocation” on page
2-240.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as a nonnegative scalar. The software sets the concentration per word
to WordConcentration/numWords, where numWords is the vocabulary size of the input documents.
For more information, see “Latent Dirichlet Allocation” on page 2-240.

CorpusTopicProbabilities — Topic probabilities of input document set
vector

Topic probabilities of input document set, specified as a vector. The corpus topic probabilities of an
LDA model are the probabilities of observing each topic in the entire data set used to fit the LDA
model. CorpusTopicProbabilities is a 1-by-K vector where K is the number of topics. The kth
entry of CorpusTopicProbabilities corresponds to the probability of observing topic k.

DocumentTopicProbabilities — Topic probabilities per input document
matrix

Topic probabilities per input document, specified as a matrix. The document topic probabilities of an
LDA model are the probabilities of observing each topic in each document used to fit the LDA model.
DocumentTopicProbabilities is a D-by-K matrix where D is the number of documents used to fit
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the LDA model, and K is the number of topics. The (d,k)th entry of DocumentTopicProbabilities
corresponds to the probability of observing topic k in document d.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros), then the
corresponding columns of DocumentTopicProbabilities and TopicWordProbabilities are
ZET0S.

The order of the rows in DocumentTopicProbabilities corresponds to the order of the
documents in the training data.

TopicWordProbabilities — Word probabilities per topic
matrix

Word probabilities per topic, specified as a matrix. The topic word probabilities of an LDA model are
the probabilities of observing each word in each topic of the LDA model. TopicWordProbabilities
is a V-by-K matrix, where V is the number of words in Vocabulary and K is the number of topics.
The (v,k)th entry of TopicWordProbabilities corresponds to the probability of observing word v
in topic k.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros), then the
corresponding columns of DocumentTopicProbabilities and TopicWordProbabilities are
ZEeros.

The order of the rows in TopicWordProbabilities corresponds to the order of the words in
Vocabulary.

TopicOrder — Topic order
"initial-fit-probability' (default) | 'unordered’

Topic order, specified as one of the following:

 ‘'initial-fit-probability' - Sort the topics by the corpus topic probabilities of the initial
model fit. These probabilities are the CorpusTopicProbabilities property of the initial
ldaModel object returned by fitlda. The resume function does not reorder the topics of the
resulting 1daModel objects.

* ‘'unordered' - Do not order topics.

FitInfo — Information recorded when fitting LDA model
struct

Information recorded when fitting LDA model, specified as a struct with the following fields:
* TerminationCode - Status of optimization upon exit

* 0 - Iteration limit reached.
* 1 - Tolerance on log-likelihood satisfied.
* TerminationStatus - Explanation of the returned termination code
* NumIterations - Number of iterations performed
* NegativeloglLikelihood - Negative log-likelihood for the data passed to fitlda
* Perplexity - Perplexity for the data passed to fitlda
* Solver - Name of the solver used
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* History - Struct holding the optimization history
* StochasticInfo - Struct holding information for stochastic solvers

Data Types: struct

Vocabulary — List of words in the model
string vector

List of words in the model, specified as a string vector.

Data Types: string

Object Functions

logp Document log-probabilities and goodness of fit of LDA model
predict Predict top LDA topics of documents
resume Resume fitting LDA model

topkwords Most important words in bag-of-words model or LDA topic

transform  Transform documents into lower-dimensional space

wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA
model

Examples
Fit LDA Model

To reproduce the results in this example, set rng to 'default’.
rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: ["fairest" "creatures" "desire
NumWords: 3092
NumDocuments: 154

"increase" "thereby"

Fit an LDA model with four topics.

numTopics = 4;
mdl = fitlda(bag,numTopics)

"beautys"
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Initial topic assignments

sampled in 0.

164306 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.04 | | 1.215e+03 | 1.000 | 0 |
| 1| 0.02 | 1.0482e-02 | 1.128e+03 | 1.000 | 0 |
| 2 | 0.01 | 1.7190e-03 | 1.115e+03 | 1.000 | 0 |
| 3 0.02 | 4.3796e-04 | 1.118e+03 | 1.000 | 0 |
| 4 | 0.01 | 9.4193e-04 | 1.111e+03 | 1.000 | 0 |
| 5 | 0.02 | 3.7079e-04 | 1.108e+03 | 1.000 | 0 |
| 6 | 0.01 | 9.5777e-05 | 1.107e+03 | 1.000 | 0 |
mdl =
ldaModel with properties:
NumTopics: 4
WordConcentration: 1
TopicConcentration: 1
CorpusTopicProbabilities: [0.2500 0.2500 0.2500 0.2500]
DocumentTopicProbabilities: [154x4 double]
TopicWordProbabilities: [3092x4 double]
Vocabulary: ["fairest" "creatures" "desire" "increase"
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Visualize the topics using word clouds.

figure
for topicIdx

1:4

subplot(2,2,topicIdx)

wordcloud(mdl, topicIdx);

title("Topic: " + topicIdx)

end
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Highest Probability Words of LDA Topic
Create a table of the words with highest probability of an LDA topic.

To reproduce the results, set rng to 'default’.
rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents);
Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics, 'Verbose',0);
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Find the top 20 words of the first topic.
k = 20;

topicldx = 1;

tbl = topkwords(mdl,k,topicIdx)

tb1=20x2 table

Word Score
"eyes" 0.11155
"beauty" 0.05777
"hath" 0.055778
"still" 0.049801
"true" 0.043825
"mine" 0.033865
"find" 0.031873
"black" 0.025897
"look" 0.023905
"tis" 0.023905
"kind" 0.021913
"seen" 0.021913
"found" 0.017929
"sin" 0.015937
"three" 0.013945

"golden" 0.0099608

Find the top 20 words of the first topic and use inverse mean scaling on the scores.
tbl = topkwords(mdl,k,topicIdx, 'Scaling', 'inversemean')

tb1=20x2 table

Word Score
"eyes" 1.2718
"beauty" 0.59022
"hath" 0.5692
"still" 0.50269
"true" 0.43719
"mine" 0.32764
"find" 0.32544
"black" 0.25931
"tis" 0.23755
"look" 0.22519
"kind" 0.21594
"seen" 0.21594
"found" 0.17326
"sin" 0.15223
"three" 0.13143

"golden" 0.090698

Create a word cloud using the scaled scores as the size data.
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figure
wordcloud(tbl.Word, tbl.Score);

find
beauty =

mine ... seen

*eyesS:

true sty hath

look
found

Document Topic Probabilities of LDA Model

Get the document topic probabilities (also known as topic mixtures) of the documents used to fit an
LDA model.

To reproduce the results, set rng to 'default’.
rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";

str = extractFileText(filename);

textData = split(str,newline);

documents = tokenizedDocument (textData);
Create a bag-of-words model using bagOfWords.
bag = bag0fWords(documents);

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.
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numTopics = 20;
mdl = fitlda(bag,numTopics, 'Verbose',0)

mdl =
ldaModel with properties:

NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 doublel]
Vocabulary: ["fairest" "creatures" "desire"
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

"increase" "thereby"

View the topic probabilities of the first document in the training data.

topicMixtures = mdl.DocumentTopicProbabilities;
figure

bar(topicMixtures(1,:))

title("Document 1 Topic Probabilities")
xlabel("Topic Index")

ylabel("Probability")

Document 1 Topic Probabilities

06 . .
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0.2

Probability
=
=
= =

o
&

0.04

0.02

0 2 4 6 8 10 12 14 16 18 20
Topic Index
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Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0fWords.

bag bag0fWords (documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]

Vocabulary: ["fairest" "creatures" "desire" "increase" "thereby" "beautys"
NumWords: 3092
NumDocuments: 154
Fit an LDA model with 20 topics.
numTopics = 20;
mdl = fitlda(bag,numTopics)
Initial topic assignments sampled in 0.106969 seconds.
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
[ 0 | 1.13 | | 1.159e+03 | 5.000 | 0 |
[ 1 | 0.05 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
[ 2 | 0.06 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.06 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
[ 4 | 0.06 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5] 0.05 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.05 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =
ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: ["fairest" "creatures" "desire" "increase" "thereby"
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Predict the top topics for an array of new documents.

newDocuments

TopicOrder:

FitInfo: [1x1 struct]

= tokenizedDocument([

‘initial-fit-probability’

"what's in a name? a rose by any other name would smell as sweet."

"if music be the food of love,
topicldx = predict(mdl,newDocuments)

topicIdx = 2x1

19
8

Visualize the predicted topics using word clouds.

figure

subplot(1,2,1)

wordcloud(mdl, topicIdx(1));
title("Topic " + topicIdx(1l))
subplot(1,2,2)

wordcloud(mdl, topicIdx(2));
title("Topic " + topicIdx(2))
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More About

Latent Dirichlet Allocation

A latent Dirichlet allocation (LDA) model is a document topic model which discovers underlying topics
in a collection of documents and infers word probabilities in topics. LDA models a collection of D
documents as topic mixtures 64, ..., Op, over K topics characterized by vectors of word probabilities

@1, ..., . The model assumes that the topic mixtures 0, ..., 8p, and the topics ¢, ..., px follow a
Dirichlet distribution with concentration parameters a and j respectively.

The topic mixtures 04, ..., 8p are probability vectors of length K, where K is the number of topics. The
entry 6y; is the probability of topic i appearing in the dth document. The topic mixtures correspond to
the rows of the DocumentTopicProbabilities property of the LdaModel object.

The topics ¢, ..., g are probability vectors of length V, where V is the number of words in the
vocabulary. The entry ¢;, corresponds to the probability of the vth word of the vocabulary appearing
in the ith topic. The topics ¢y, ..., @x correspond to the columns of the TopicWordProbabilities
property of the LdaModel object.

Given the topics ¢y, ..., @x and Dirichlet prior a on the topic mixtures, LDA assumes the following
generative process for a document:

1 Sample a topic mixture 6~Dirichlet(a). The random variable 0 is a probability vector of length K,
where K is the number of topics.

2 For each word in the document:

a Sample a topic index z—Categorical(f). The random variable z is an integer from 1 through
K, where K is the number of topics.
b Sample a word w~Categorical(¢,). The random variable w is an integer from 1 through V,

where V is the number of words in the vocabulary, and represents the corresponding word in
the vocabulary.

Under this generative process, the joint distribution of a document with words wy, ..., wy, with topic
mixture 6, and with topic indices z1, ..., 2y is given by

N
a) H p(zn

n=1

p6,z,wia, p) = p(O 0)p(wn|zn, 0),

where N is the number of words in the document. Summing the joint distribution over z and then
integrating over 0 yields the marginal distribution of a document w:

a,¢) = éfp(e

The following diagram illustrates the LDA model as a probabilistic graphical model. Shaded nodes are
observed variables, unshaded nodes are latent variables, nodes without outlines are the model
parameters. The arrows highlight dependencies between random variables and the plates indicate
repeated nodes.

p(w

N
@) [ Sp@a|0)pwy |z 0)d6.
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Dirichlet Distribution

The Dirichlet distribution is a continuous generalization of the multinomial distribution. Given the
number of categories K = 2, and concentration parameter a, where a is a vector of positive reals of
length K, the probability density function of the Dirichlet distribution is given by

K

i=1
where B denotes the multivariate Beta function given by

K
. re

B(a) =

A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The symmetric
Dirichlet distribution is characterized by the concentration parameter a, where all the elements of a
are the same.

Version History
Introduced in R2017b

See Also

fitlda | logp | predict | resume | topkwords | transform | wordcloud | bagOfWords |
lsaModel

Topics
“Analyze Text Data Using Topic Models”
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“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”
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lexrankScores

Document scoring with LexRank algorithm

Syntax

lexrankScores(documents)
lexrankScores(bag)

scores
scores

Description

scores = lexrankScores(documents) scores the specified documents for importance according
to pairwise similarity values using the LexRank algorithm. The function uses cosine similarity, and

computes importance using the PageRank algorithm.

scores = lexrankScores(bag) scores documents encoded by a bag-of-words or bag-of-n-grams

model.

Examples

Importance of Documents

Create an array of tokenized documents.

str = [
"the quick brown fox jumped over the lazy dog"
"the fast brown fox jumped over the lazy dog"
"the lazy dog sat there and did nothing"
"the other animals sat there watching"];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

tokens: the quick brown fox jumped over the lazy dog
tokens: the fast brown fox jumped over the lazy dog
tokens: the lazy dog sat there and did nothing
tokens: the other animals sat there watching

[e) e cJVe (o]

Calculate their LexRank scores.
scores = lexrankScores(documents);
Visualize the scores in a bar chart.

figure

bar(scores)
xlabel("Document")
ylabel("Score")
title("LexRank Scores")

2-243



2 Functions

2-244

LexRank Scores
0.35 . . .

0.3

0.25

0.2

Score

0.15

0.1

0.05

1 2 3 4
Document

Scores Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";

tbl = readtable(filename, 'TextType', 'string');
textData = tbl.Sonnet;

documents = tokenizedDocument(textData);

bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3527 doublel]
Vocabulary: ["From" "fairest" "creatures" "we"
NumWords: 3527
NumDocuments: 154

Calculate LexRank scores for each sonnet.

scores = lexrankScores(bag);

Visualize the scores in a bar chart.

"desire"

"increase"
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figure

bar(scores)
xlabel("Document")
ylabel("Score")
title("LexRank Scores")

LexRank Scores
0.0 . . .

50 100 150
Document

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0OfNgrams
object. If bag is a bag0fNgrams object, then the function treats each n-gram as a single word.
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Output Arguments

scores — LexRank scores
vector

LexRank scores, returned as a N-by-1 vector, where scores (i) corresponds to the score for the ith
input document and N is the number of input documents.

Version History
Introduced in R2020a

References

[1] Erkan, Glines, and Dragomir R. Radev. "Lexrank: Graph-based Lexical Centrality as Salience in
Text Summarization." Journal of Artificial Intelligence Research 22 (2004): 457-479.

See Also

tokenizedDocument | bleuEvaluationScore | rougeEvaluationScore | bm25Similarity |
cosineSimilarity | textrankScores | mmrScores | extractSummary

Topics
“Sequence-to-Sequence Translation Using Attention”
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Latent semantic analysis (LSA) model

Description

A latent semantic analysis (LSA) model discovers relationships between documents and the words
that they contain. An LSA model is a dimensionality reduction tool useful for running low-dimensional
statistical models on high-dimensional word counts. If the model was fit using a bag-of-n-grams
model, then the software treats the n-grams as individual words.

Creation

Create an LSA model using the fitlsa function.

Properties

NumComponents — Number of components
nonnegative integer

Number of components, specified as a nonnegative integer. The number of components is the
dimensionality of the result vectors. Changing the value of NumComponents changes the length of
the resulting vectors, without influencing the initial values. You can only set NumComponents to be
less than or equal to the number of components used to fit the LSA model.

Example: 100

FeatureStrengthExponent — Exponent scaling feature component strengths
nonnegative scalar

Exponent scaling feature component strengths for the DocumentScores and WordScores
properties, and the transform function, specified as a nonnegative scalar. The LSA model scales the
properties by their singular values (feature strengths), with an exponent of
FeatureStrengthExponent/2.

Example: 2.5

ComponentWeights — Component weights
numeric vector

Component weights, specified as a numeric vector. The component weights of an LSA model are the
singular values, squared. ComponentWeights is a 1-by-NumComponents vector where the jth entry
corresponds to the weight of component j. The components are ordered by decreasing weights. You
can use the weights to estimate the importance of components.

DocumentScores — Score vectors per input document
matrix

Score vectors per input document, specified as a matrix. The document scores of an LSA model are
the score vectors in lower dimensional space of each document used to fit the LSA model.
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DocumentScores is a D-by-NumComponents matrix where D is the number of documents used to fit
the LSA model. The (i j)th entry of DocumentScores corresponds to the score of component j in
document i.

WordScores — Word scores per component
matrix

Word scores per component, specified as a matrix. The word scores of an LSA model are the scores of
each word in each component of the LSA model. WordScores is a V-by-NumComponents matrix
where V is the number of words in Vocabulary. The (v;j)th entry of WordScores corresponds to the
score of word v in component j.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

Object Functions
transform Transform documents into lower-dimensional space

Examples

Fit LSA Model
Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: ["fairest" "creatures" "desire" "increase" "thereby"
NumWords: 3092
NumDocuments: 154

Fit an LSA model with 20 components.

numComponents = 20;
mdl = fitlsa(bag,numComponents)

"beautys"
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mdl =
lsaModel with properties:

NumComponents:
ComponentWeights:
DocumentScores:
WordScores:

Vocabulary:
FeatureStrengthExponent:

20

[2.7866e+03 515.5889 443.6428 316.4191 295.4065 261.8927 226.1649 1
[154x20 double]

[3092x20 double]

["fairest" "creatures" "desire" "increase" "thereby"

2

Transform new documents into lower dimensional space using the LSA model.

newDocuments = tokenizedDocument ([
"what's in a name? a rose by any other name would smell as sweet."

"if music be the food of

love, play on."]);

dscores = transform(mdl,newDocuments)

dscores = 2x20

0.1338 0.1623 0.1680 -0.0541 -0.2464 -0.0134 0.2604 -0.0205 -0.1127 0.

0.2547 0.5576 -0.0095 0.5660 -0.0643 -0.1236 -0.0082 0.0522 0.0690 -0.(
Calculate Document Similarity
Create a bag-of-words model from some text data.
str = [

"I enjoy ham, eggs and bacon for breakfast."

"I sometimes skip breakfast."

"I eat eggs and ham for dinner."
documents = tokenizedDocument(str);
bag = bag0fWords(documents);
Fit an LSA model with two components. Set the feature strength exponent to 0.5.
numComponents = 2;
exponent = 0.5;
mdl = fitlsa(bag,numComponents,

'FeatureStrengthExponent',exponent)
mdl =

lsaModel with properties:
NumComponents: 2
ComponentWeights: [16.2268 4.0000]
DocumentScores: [3x2 double]
WordScores: [14x2 double]
Vocabulary: [IIIII Ilenjoyll Ilhamll II’II Ileggsll Ilandll Ilbaconll Ilf(

FeatureStrengthExponent:

0.5000

Calculate the cosine distance between the documents score vectors using pdist. View the distances
in a matrix D using squareform. D(1i, j) denotes the distance between document i and j.
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dscores = mdl.DocumentScores;
distances = pdist(dscores, 'cosine');
D = squareform(distances)

D = 3x3
0 0.6244 0.1489
0.6244 0 1.1670
0.1489 1.1670 0

Visualize the similarity between documents by plotting the document score vectors in a compass plot.

figure

compass(dscores(1,1),dscores(1,2), 'red")

hold on

compass(dscores(2,1),dscores(2,2), 'green')
compass(dscores(3,1),dscores(3,2), 'blue'")

hold off

title("Document Scores")

legend(["Document 1" "Document 2" "Document 3"],'Location', 'bestoutside')

Document Scores

90 15 Document 1
’ Document 2
120 60 Document 3
, 1
N
160 30
' 0.5
180 = 0
210 330
240 300
270

Version History
Introduced in R2017b
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See Also
bagOfWords | fitlsa | transform | ldaModel

Topics

“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”
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logp

Document log-probabilities and goodness of fit of LDA model

Syntax

logProb = logp(ldaMdl,documents)
logProb = logp(ldaMdl, counts)
logProb = logp(ldaMdl,bag)
[LogProb,ppl]l = logp( )

= logp(___ ,Name,Value)

Description

logProb = logp(ldaMdl,documents) returns the log-probabilities of documents under the LDA
model 1daMd1.

logProb = logp(ldaMdl, counts) returns the log-probabilities of the documents represented by
the matrix of word counts counts.

logProb = logp(ldaMdl, bag) returns the log-probabilities of the documents represented by a
bag-of-words or bag-of-n-grams model.

[LogProb,ppl] = logp( ) returns the perplexity computed from the log-probabilities.

= logp( ,Name, Value) specifies additional options using one or more name-value pair
arguments.

Examples

Calculate Document Log-Probabilities

To reproduce the results in this example, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bagO0fWords(documents)

bag =
bag0fWords with properties:
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Counts: [154x3092 double]
Vocabulary: ["fairest" "creatures" "desire" "increase" "thereby" "beautys"
NumWords: 3092
NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Compute the document log-probabilities of the training documents and show them in a histogram.

logProbabilities = logp(mdl,documents);
figure

histogram(logProbabilities)

xlabel("Log Probability")
ylabel("Frequency")

title("Document Log-Probabilities")

10 Document Log-Probabilities
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o
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Identify the three documents with the lowest log-probability. A low log-probability may suggest that
the document may be an outlier.

[~,1dx] = sort(logProbabilities);
idx(1:3)

ans = 3xI
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65
documents(idx(1:3))

ans =
3x1 tokenizedDocument:

76 tokens: poor soul centre sinful earth sinful earth rebel powers array why dost thou pine !
76 tokens: devouring time blunt thou lions paws make earth devour own sweet brood pluck keen
73 tokens: brass nor stone nor earth nor boundless sea sad mortality oersways power rage sha

Calculate Document Log-Probabilities from Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1Ix2

154 3092

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.0701797 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.19 | | 1.159e+03 | 5.000 | 0 |
| 1| 0.07 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.06 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.06 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.06 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.06 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.06 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
[0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
[154x20 double]

CorpusTopicProbabilities:
DocumentTopicProbabilities:
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TopicWordProbabilities: [3092x20 double]
Vocabulary: [Illll II2II II3II II4II II5II II6II II7II II8II
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Compute the document log-probabilities of the training documents. Specify to draw 500 samples for
each document.

numSamples = 500;
logProbabilities = logp(mdl, counts,
"NumSamples',numSamples);

Show the document log-probabilities in a histogram.

figure

histogram(logProbabilities)
xlabel("Log Probability")
ylabel("Frequency")

title("Document Log-Probabilities")

0 Document Log-Probabilities
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Frequency
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o

550 -500 450 -400 -350
Log Probability

Identify the indices of the three documents with the lowest log-probability.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans = 3x1
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Compare Goodness of Fit

Compare the goodness of fit for two LDA models by calculating the perplexity of a held-out test set of
documents.

To reproduce the results, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Set aside 10% of the documents at random for testing.

numDocuments = numel(documents);

cvp = cvpartition(numDocuments, 'HoldOut',0.1);
documentsTrain = documents(cvp.training);
documentsTest = documents(cvp.test);

Create a bag-of-words model from the training documents.

bag bagO0fWords (documentsTrain)

bag =
bagOfWords with properties:

Counts: [139x2909 doublel
Vocabulary: ["fairest" "creatures” "desire" "increase" "thereby" "beautys"”
NumWords: 2909
NumDocuments: 139

Fit an LDA model with 20 topics to the bag-of-words model. To suppress verbose output, set
'Verbose' to 0.

numTopics = 20;
mdll = fitlda(bag,numTopics, 'Verbose',0);

View information about the model fit.
mdll.FitInfo

ans = struct with fields:
TerminationCode: 1
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TerminationStatus: "Relative tolerance on log-likelihood satisfied."
NumIterations: 26
NegativelLoglLikelihood: 5.6915e+04
Perplexity: 742.7118
Solver: "cgs"
History: [1x1 struct]

Compute the perplexity of the held-out test set.
[~,ppll] = logp(mdll,documentsTest)

ppll = 781.6078

Fit an LDA model with 40 topics to the bag-of-words model.

numTopics = 40;
mdl2 = fitlda(bag,numTopics, 'Verbose',0);

View information about the model fit.
mdl2.FitInfo
ans = struct with fields:

TerminationCode: 1

TerminationStatus: "Relative tolerance on log-likelihood satisfied."
NumIterations: 37
NegativelLoglLikelihood: 5.4466e+04
Perplexity: 558.8685

Solver: "cgs"
History: [1x1 struct]

Compute the perplexity of the held-out test set.
[~,ppl2] = logp(mdl2,documentsTest)

ppl2 = 808.6602

A lower perplexity suggests that the model may be better fit to the held-out test data.

Input Arguments

1daMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.
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bag — Input model
bagO0fWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts (i, j) corresponds to the number of times the

Jjth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'NumSamples',b 500 specifies to draw 500 samples for each document

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* ‘'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns’', then you might experience a significant reduction in optimization-
execution time.

NumSamples — Number of samples to draw
1000 (default) | positive integer

Number of samples to draw for each document, specified as the comma-separated pair consisting of
"NumSamples' and a positive integer.

Example: 'NumSamples',h500

Output Arguments

logProb — Log-probabilities
numeric vector

Log-probabilities of the documents under the LDA model, returned as a numeric vector.
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ppl — Perplexity
positive scalar

Perplexity of the documents calculated from the log-probabilities, returned as a positive scalar.

Algorithms

The logp uses the iterated pseudo-count method described in [1].

Version History
Introduced in R2017b

References

[1] Wallach, Hanna M., Iain Murray, Ruslan Salakhutdinov, and David Mimno. "Evaluation methods for
topic models." In Proceedings of the 26th annual international conference on machine
learning, pp. 1105-1112. ACM, 2009. Harvard

See Also
fitlda | predict | transform|wordcloud | bag0fWords | LldaModel

Topics

“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”
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Convert documents to lowercase

Syntax

newDocuments = lower(documents)

Description

newDocuments = lower(documents) converts each uppercase character in the input documents
to the corresponding lowercase character, and leaves all other characters unchanged.

Examples

Convert Documents to Lowercase

Convert all uppercase characters in an array of documents to lowercase.
documents = tokenizedDocument ([

"An Example of a Short Sentence"

"A Second Short Sentence"])

documents =
2x1 tokenizedDocument:

6 tokens: An Example of a Short Sentence
4 tokens: A Second Short Sentence

newDocuments = lower(documents)

newDocuments =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newDocuments — Output documents
tokenizedDocument array
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Output documents, returned as a tokenizedDocument array.

Version History
Introduced in R2017b

See Also

decodeHTMLEntities | eraseTags | eraseURLs | erasePunctuation | upper |
tokenizedDocument

Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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mecabOptions

Options for MeCab tokenization

Description

A mecabOptions object specifies additional options for tokenizing Japanese and Korean text.

To tokenize using the specified MeCab tokenization options, use the 'TokenizeMethod' option of
tokenizedDocument.

Creation

Syntax

options = mecabOptions

options = mecabOptions(Name,Value)

Description

options = mecabOptions creates a MeCab tokenization option set with the default values for
tokenizing Japanese.

options = mecabOptions(Name,Value) additionally sets additional “Properties” on page 2-262
using one or more name-value pair arguments.

Properties

Model — Path to trained model
string scalar | character vector

Path to trained model (MeCab dictionary), specified as a string scalar or a character vector.

The default value is a path to the internal dictionary for Japanese tokenization.
Example: "C:\myDict"
Data Types: char | string

UserModel — Files containing model extensions
"" (default) | string array | character vector | cell array of character vectors

Files containing model extensions (MeCab user dictionary .dic files), specified as a string array, a
character vector, or a cell array of character vectors.

Example: "C:\myFile.dic"
Data Types: char | string | cell

LemmaExtractor — Function extracting lemma from MeCab reply
@textanalytics.ja.mecabToLemma (default) | function handle
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Function extracting lemma from MeCab reply, specified as a function handle.

The function must have the form lemmata = fun(words,info), where words is a string vector of
tokens and info is a struct with the following fields:

* Feature - String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.
* PartOfSpeech - Numerical code used inside the dictionary for the part-of-speech classification.

The output lemmata is a string array of the same size as words containing the extracted lemmata.

The default lemma extractor is the textanalytics.ja.mecabToLemma function.

Data Types: function handle

POSExtractor — Function extracting part-of-speech information from MeCab reply
@textanalytics.ja.mecabToPO0S (default) | function handle

Function extracting part-of-speech information from MeCab reply, specified as a function handle.

The function must have the form posTags = fun(words,info), where words is a string vector of
tokens and info is a struct with the following fields:

* Feature - String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

* PartOfSpeech - Numerical code used inside the dictionary for the part-of-speech classification.

The output posTags is a categorical array of the same size as words containing the extracted part-

of-speech tags from the following categories:

* adjective

* adposition

* adverb

* auxiliary-verb

e coord-conjunction

* determiner

* interjection

* noun
* numeral
* pronoun

* proper-noun
* punctuation
* symbol

s verb

* other

The default part-of-speech information extractor is the textanalytics.ja.mecabToPO0S function.

Data Types: function handle
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NERExtractor — Function extracting named entity information from MeCab reply
@textanalytics.ja.mecabToNER (default) | function handle

Function extracting named entity information from MeCab reply, specified as a function handle.

The function must have the form entities = fun(words,info), where words is a string vector of
tokens and info is a struct with the following fields:

* Feature - String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

* PartOfSpeech - Numerical code used inside the dictionary for the part-of-speech classification.

The output entities is a categorical array of the same size as words containing the extracted
entities from the following categories:

* non-entity

* person

* organization
* location

* other

The default part-of-speech information extractor is the textanalytics.ja.mecabToNER function.

Data Types: function handle

Examples

Create MeCab Options Object
Create a MecabOptions object containing the default options for Japanese tokenization.
options = mecabOptions

options =
MecabOptions with properties:
Model: "C:\Program Files\MATLAB\R2023a\sys\share\dict-ipadic"
UserModel: ""
LemmaExtractor: @textanalytics.ja.mecabTolLemma

POSExtractor: @textanalytics.ja.mecabToP0S
NERExtractor: @textanalytics.ja.mecabToNER

Specify MeCab User Dictionary for Tokenization
Tokenize Japanese text using custom MeCab options.

Create a string array of Japanese text.

str = [
"ERICINA. BLT, "
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"EOMHTELD, "
"ECEAEE, BLTLS, "
"EQEABEEMLTLS, "1

Create a MecabOptions object and specify a user model as a .dic file using the 'UserModel’
option.

options = mecabOptions('UserModel’', 'myFile.dic"')

options =
MecabOptions with properties:

Model: "C:\Program Files\MATLAB\R2023a\sys\share\dict-ipadic"
UserModel: "myFile.dic"
LemmaExtractor: @textanalytics.ja.mecabTolLemma
POSExtractor: @textanalytics.ja.mecabToP0S
NERExtractor: @textanalytics.ja.mecabToNER

Tokenize the text using the specified options using the 'TokenizeMethod' option.
documents = tokenizedDocument(str, ‘'TokenizeMethod',options)

documents =
4x1 tokenizedDocument:

6 tokens: 7% [T ¥A& . EBELD
6 tokens: Z& ® NH&H T HELL .
10 tokens: Z= 2 2 A #EE . B T W3S,
10 tokens: Z& M E M 1#BE= F# L T W5,

Version History
Introduced in R2019b

See Also

tokenizedDocument | tokenDetails | addPartOfSpeechDetails | addEntityDetails |
addLemmaDetails | normalizeWords | addLanguageDetails | corpusLanguage

Topics

“Japanese Language Support”
“Analyze Japanese Text Data”
“Language Considerations”
“Language-Independent Features”
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mmrScores

Document scoring with Maximal Marginal Relevance (MMR) algorithm

Syntax

scores mmrScores (documents,queries)
scores = mmrScores(bag,queries)
scores mmrScores ( , Lambda)

Description

scores = mmrScores(documents,queries) scores documents according to their relevance to a
queries avoiding redundancy using the MMR algorithm. The score in scores (i, j) is the MMR
score of documents (i) relative to queries(j).

scores = mmrScores(bag,queries) scores documents encoded by the bag-of-words or bag-of-n-
grams model bag relative to queries. The score in scores(i,j) is the MMR score of the ith
document in bag relative to queries(j).

scores = mmrScores ( , Lambda) also specifies the trade off between relevance and
redundancy.

Examples

Relevance to Query

Create an array of input documents.

str = [
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
"the dog sat there and did nothing"
"the other animals sat there watching"];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

tokens: the quick brown fox jumped over the lazy dog
tokens: the fast fox jumped over the lazy dog
tokens: the dog sat there and did nothing

tokens: the other animals sat there watching

(o) BN e {e)

Create an array of query documents.

str = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"];
queries = tokenizedDocument(str)
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queries =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

Calculate MMR scores using the mmrScores function. The output is a sparse matrix.

scores = mmrScores(documents,queries);

Visualize the MMR scores in a heat map.

figure

heatmap(scores);
xlabel("Query Document")
ylabel("Input Document")
title("MMR Scores")

MMR Scores

0.2

015

01

0.05

[

0.2037

-0.05

Input Document

Ll

1-0.15

1025

Query Document

Higher scores correspond to stonger relavence to the query documents.

Relevance Versus Redundancy

Create an array of input documents.
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str = [
"the quick brown fox jumped over the lazy dog"
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
"the dog sat there and did nothing"
"the other animals sat there watching"
"the other animals sat there watching"];
documents = tokenizedDocument(str);

Create a bag-of-words model from the input documents.

bag bagO0fWords (documents)

bag =
bagOfWords with properties:

Counts: [6x17 double]
Vocabulary: ["the" "quick" "brown" "fox"
NumWords: 17
NumDocuments: 6

Create an array of query documents.

str = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"l];
queries = tokenizedDocument(str)

queries =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

Calculate the MMR scores. The output is a sparse matrix.
scores = mmrScores(bag,queries);
Visualize the MMR scores in a heat map.

figure

heatmap(scores);
xlabel("Query Document")
ylabel("Input Document")
title("MMR Scores")
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MMR Scores

Input Document

& -0.6813

0.194

0.6747

Query Document

05

06

Now calculate the scores again, and set the lambda value to 0.01. When the lambda value is close to
0, redundant documents yield lower scores and diverse (but less query-relevant) documents yield

higher scores.

lambda
scores

0.01;
mmrScores(bag, queries, lambda) ;

Visualize the MMR scores in a heat map.

figure

heatmap(scores);

xlabel("Query Document")

ylabel("Input Document")

title("MMR Scores, lambda = " + lambda)
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MMR Scores, lambda =0.01

0.00829

0.006466

Input Document

107
-0.09498 0.095

108

1-048

Query Document

Finally, calculate the scores again and set the lambda value to 1. When the lambda value is 1, the
query-relevant documents yield higher scores despite other documents yielding high scores.

lambda
scores

1;
mmrScores(bag, queries, lambda) ;

Visualize the MMR scores in a heat map.

figure

heatmap(scores);

xlabel("Query Document")

ylabel("Input Document")

title("MMR Scores, lambda = " + lambda)
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MMR Scores, lambda =1

0.829

0.829
=
T
E
S
o
=}
(i
é_ 4 0.1257 0.1758
103
5 0.06232 0.08449
102
& 0.06232 0.08449 04
1 2

Query Document

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

queries — Set of query documents
tokenizedDocument array | string array of words | cell array of character vectors

Set of query documents, specified as one of the following:

* A tokenizedDocument array

* A 1-by-N string array representing a single document, where each element is a word
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* A 1-by-N cell array of character vectors representing a single document, where each element is a
word

To compute term frequency and inverse document frequency statistics, the function encodes
queries using a bag-of-words model. The model it uses depends on the syntax you call it with. If
your syntax specifies the input argument documents, then it uses bag0fWords (documents). If
your syntax specifies bag, then the function encodes queries using bag then uses the resulting tf-idf
matrix.

lambda — Trade off between relevance and redundancy
0.3 (default) | nonnegative scalar

Trade off between relevance and redundancy, specified as a nonnegative scalar.

When lambda is close to 0, redundant documents yield lower scores and diverse (but less query-
relevant) documents yield higher scores. If Llambda is 1, then query-relevant documents yield higher
scores despite other documents yielding high scores.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Output Arguments

scores — MMR scores
vector

MMR scores, returned as an N1-by-N2 matrix, where scores (i, j) is the MMR score of
documents (i) relative to jth query document, and N1 and N2 are the number of input and query
documents, respectively.

A document has a high MMR score if it is both relevant to the query and has minimal similarity
relative to the other documents.

Version History
Introduced in R2020a

References

[1] Carbonell, Jaime G., and Jade Goldstein. "The use of MMR, diversity-based reranking for
reordering documents and producing summaries." In SIGIR, vol. 98, pp. 335-336. 1998.

See Also

tokenizedDocument | bleuEvaluationScore | rougeEvaluationScore | bm25Similarity |
cosineSimilarity | textrankScores | lexrankScores | extractSummary

Topics
“Sequence-to-Sequence Translation Using Attention”
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textanalytics.unicode.nfc

Package: textanalytics.unicode

Unicode composed normalized form (NFC)

Syntax

newStr = textanalytics.unicode.nfc(str)

Description

newStr = textanalytics.unicode.nfc(str) normalizes the string str to the Unicode
canonical composition form (NFC).

Examples

Normalize String to Unicode Canonical Composition Form

Strings that look identical can have different underlying representations. The Unicode canonical
composition form (NFC) ensures that equivalent strings have a unique binary representation.

Consider the string "jalapefio", where the character "A" is represented as the character "n"
followed by the code unit "\x0303", which corresponds to the diacritic "~". On some systems, the
character "A" appears as two characters. The string has length 9.

str

compose("jalapen\x03030")

str =
"jalapefio"

strlength(str)
ans = 9

Normalize the string using the textanalytics.unicode.nfc function. On some systems, the
output string appears to be identical to the input string.

newStr textanalytics.unicode.nfc(str)

newStr =
"jalapefio"

View the length of the normalized string. The normalized representation includes one fewer code
units. In this case, the function merges the letter "n" and the diacritic "~" into a single code unit
that represents "A".

strlength(newStr)
ans = 8

Extract the seventh code unit of the normalized string.
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extractBetween(newStr,7,7)

ans =

n

Check whether str and newStr are equal using the == operator. The operator returns 0 because the
strings have different underlying representations.

tf = str == newStr

tf logical

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character vectors. str and
newStr have the same data type.

Algorithms
Unicode Normalization Forms

For more information about Unicode normalization forms, see Unicode Standard Annex #15 Unicode
Normalization Forms.

Version History
Introduced in R2022b

References

[1] Whistler, Ken, ed. "Unicode Standard Annex #15: Unicode Normalization Forms." Unicode
Technical Reports, August 27, 2021. https://unicode.org/reports/trl5/.

See Also
tokenizedDocument | textanalytics.unicode.nfd | textanalytics.unicode.nfkc |
textanalytics.unicode.nfkd | textanalytics.unicode.UTF32


https://unicode.org/reports/tr15/
https://unicode.org/reports/tr15/
https://unicode.org/reports/tr15/

textanalytics.unicode.nfc

Topics

“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Language Considerations”
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Package: textanalytics.unicode

Unicode decomposed normalized form (NFD)

Syntax

newStr = textanalytics.unicode.nfd(str)

Description

newStr = textanalytics.unicode.nfd(str) normalizes the string str to the Unicode
canonical decomposition form (NFD).

Examples

Normalize String to Unicode Canonical Decomposition Form

Strings that look identical can have different underlying representations. The Unicode canonical
decomposition form (NFD) ensures that equivalent strings have a unique binary representation.

Consider the string "jalapefio" which contains 8 letters.

str = "jalapeno";
strlength(str)
ans = 8

Normalize the string using the textanalytics.unicode.nfd function. On some systems, the
output string appears to be identical to the input string.

newStr

textanalytics.unicode.nfd(str)

newStr =
"jalapefio"

View the number of code points in the new string. The normalized representation includes one extra
code point. In this case, the function splits the accented letter "fi" into two separate code points.

strlength(newStr)
ans = 9

Extract the seventh and eighth code points in the normalized string. On some systems, the output
appears to be a single character.

extractBetween(newStr,7,8)

ans =

n
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Check whether the strings str and newStr are equal using the == operator. The operator returns 0
because the strings have different underlying representations.

tf = str == newStr

tf logical

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character vectors. str and
newStr have the same data type.

Algorithms
Unicode Normalization Forms

For more information about Unicode normalization forms, see Unicode Standard Annex #15 Unicode
Normalization Forms.

Version History
Introduced in R2021a

References

[1] Whistler, Ken, ed. "Unicode Standard Annex #15: Unicode Normalization Forms." Unicode
Technical Reports, August 27, 2021. https://unicode.org/reports/trl5/.

See Also

tokenizedDocument | textanalytics.unicode.nfc | textanalytics.unicode.nfkc |
textanalytics.unicode.nfkd | textanalytics.unicode.UTF32

Topics

“Extract Text Data from Files”
“Prepare Text Data for Analysis”
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textanalytics.unicode.nfkc

Package: textanalytics.unicode

Unicode compatibility composed normalized form (NFKC)

Syntax

newStr = textanalytics.unicode.nfkc(str)

Description

newStr = textanalytics.unicode.nfkc(str) normalizes the string str to the Unicode
compatibility composed normalized form (NFKC).

Examples

Normalize String to Unicode Compatibility Canonical Composition Form

Strings that look identical can have different underlying representations. The Unicode compatibility
canonical composition form (NFKC) ensures that equivalent strings have a unique binary
representation.

Consider the string "efficient", where the character "fi" is represented by the code unit "\xFBO3".
The string has length 7.

str compose("e\xFBO3") + "cient"

str =
"eficient"

strlength(str)

ans = 7

Normalize the string using the textanalytics.unicode.nfkc function.
newStr = textanalytics.unicode.nfkc(str)

newStr =
"efficient"

View the length of the normalized string. The normalized representation includes two extra code
units. In this case, the function replaces the "fi" character with the string "ffi".

strlength(newStr)
ans = 9
Extract the second to fourth code units of the normalized string.

extractBetween(newStr,2,4)
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ans =
nffqm

Check whether the strings str and newStr are equal using the == operator. The operator returns 0
because the strings have different underlying representations.

tf = str == newStr

tf

logical

(<]

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character vectors. str and
newStr have the same data type.

Algorithms
Unicode Normalization Forms

For more information about Unicode normalization forms, see Unicode Standard Annex #15 Unicode
Normalization Forms.

Version History
Introduced in R2022b

References

[1] Whistler, Ken, ed. "Unicode Standard Annex #15: Unicode Normalization Forms." Unicode
Technical Reports, August 27, 2021. https://unicode.org/reports/trl5/.

See Also
tokenizedDocument | textanalytics.unicode.nfc | textanalytics.unicode.nfd |
textanalytics.unicode.nfkd | textanalytics.unicode.UTF32


https://unicode.org/reports/tr15/
https://unicode.org/reports/tr15/
https://unicode.org/reports/tr15/

textanalytics.unicode.nfkc

Topics

“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Language Considerations”
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textanalytics.unicode.nfkd

Package: textanalytics.unicode

Unicode compatibility decomposed normalized form (NFKD)

Syntax

newStr = textanalytics.unicode.nfkd(str)

Description

newStr = textanalytics.unicode.nfkd(str) normalizes the string str to the Unicode
compatibility decomposed normalized form (NFKD).

Examples

Normalize String to Unicode Compatibility Canonical Decomposition Form

Strings that look identical can have different underlying representations. The Unicode compatibiity
canonical decomposition form (NFKD) ensures that equivalent strings have a unique binary
representation.

Consider the string "jalapefio", which contains eight letters.

str = "jalapeno";
strlength(str)
ans = 8

Normalize the string using the textanalytics.unicode.nfkd function. On some systems, the
output string appears to be identical to the input string.

newStr = textanalytics.unicode.nfkd(str)

newStr =
"jalapeno"

View the length of the normalized string. The normalized representation includes one extra code unit.
In this case, the function splits the accented letter "A" into two separate code units.

strlength(newStr)
ans = 9

Extract the seventh and eighth code units in the normalized string. On some systems, the output
appears to be a single character.

extractBetween(newStr,7,8)

ans =

n
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Check that the strings str and newStr are equal using the == operator. The operator returns 0
because the strings have different underlying representations.

tf = str == newStr

tf logical

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character vectors. str and
newStr have the same data type.

Algorithms
Unicode Normalization Forms

For more information about Unicode normalization forms, see Unicode Standard Annex #15 Unicode
Normalization Forms.

Version History
Introduced in R2022b

References

[1] Whistler, Ken, ed. "Unicode Standard Annex #15: Unicode Normalization Forms." Unicode
Technical Reports, August 27, 2021. https://unicode.org/reports/trl5/.

See Also

tokenizedDocument | textanalytics.unicode.nfc | textanalytics.unicode.nfd |
textanalytics.unicode.nfkc | textanalytics.unicode.UTF32

Topics

“Extract Text Data from Files”
“Prepare Text Data for Analysis”
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normalizeWords

Stem or lemmatize words

Syntax

updatedDocuments = normalizeWords(documents)

updatedWords = normalizeWords(words)

updatedWords = normalizeWords(words, 'Language', language)
= normalizeWords(  ,'Style',style)

Description

Use normalizeWords to reduce words to a root form. To lemmatize English words (reduce them to
their dictionary forms), set the 'Style"' option to 'lemma".

The function supports English, Japanese, German, and Korean text.

updatedDocuments = normalizeWords(documents) reduces the words in documents to a root
form. For English and German text, the function, by default, stems the words using the Porter
stemmer for English and German text respectively. For Japanese and Korean text, the function, by
default, lemmatizes the words using the MeCab tokenizer.

updatedWords = normalizeWords(words) reduces each word in the string array words to a root
form.

updatedWords = normalizeWords(words, 'Language', language) reduces the words and also
specifies the word language.

= normalizeWords ( , 'Style',style) also specifies normalization style. For example,
normalizeWords (documents, 'Style', 'lemma') lemmatizes the words in the input documents.

Examples

Stem Words in Documents

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
"a strongly worded collection of words"
"another collection of words"]);
newDocuments = normalizeWords(documents)

newDocuments =
2x1 tokenizedDocument:

6 tokens: a strongli word collect of word
4 tokens: anoth collect of word
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Stem Words in String Array

Stem the words in a string array using the Porter stemmer. Each element of the string array must be
a single word.

words = ["a" "strongly" "worded" "collection of" "words"];

newWords = normalizeWords(words)

newWords = 1x6 string
"a "strongli" "word" "collect" "of" "word"

Lemmatize Words in Documents

Lemmatize the words in a document array.

documents = tokenizedDocument ([
"I am building a house."
"The building has two floors."]);
newDocuments = normalizeWords(documents, 'Style', 'lemma’)

newDocuments =
2x1 tokenizedDocument:

6 tokens: i be build a house .
6 tokens: the build have two floor .

To improve the lemmatization, first add part-of-speech details to the documents using the
addPart0fSpeechDetails function. For example, if the documents contain part-of-speech details,
then normalizeWords reduces the only verb "building" and not the noun "building".

documents = addPartOfSpeechDetails(documents);
newDocuments = normalizeWords(documents, 'Style', 'lemma')

newDocuments =
2x1 tokenizedDocument:

6 tokens: i be build a house .
6 tokens: the building have two floor .

Lemmatize Japanese Text

Tokenize Japanese text using the tokenizedDocument function. The function automatically detects
Japanese text.

str = [
"EIZEMNES, BRLOATWS, "
"EQEMNMESFELTWS, "
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"BRETIXELS T, HF%EL, "
"B DERETHTGEL, "]
documents = tokenizedDocument(str);

Lemmatize the tokens using normalizeWords.

documents = normalizeWords (documents)

documents =
4x1 tokenizedDocument:

10 tokens: ZE [ 2 M 8 . B T Wb,
10 tokens: & M 2 M EE F I T W5,
9 tokens: BR T [ &Ly T . FHIFdH %L,
7 tokens: =< M ER £T H+5 7@

Stem German Text

Tokenize German text using the tokenizedDocument function. The function automatically detects
German text.

str = [
"Guten Morgen. Wie geht es dir?"

"Heute wird ein guter Tag."l;
documents = tokenizedDocument(str);

Stem the tokens using normalizeWords.
documents = normalizeWords(documents)

documents =
2x1 tokenizedDocument:

8 tokens: gut morg . wie geht es dir ?
6 tokens: heut wird ein gut tag

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

2-287



2 Functions

2-288

style — Normalization style
‘stem' | 'lemma’

Normalization style, specified as one of the following:

* 'stem' - Stem words using the Porter stemmer. This option supports English and German text
only. For English and German text, this value is the default.

* ‘'lemma' - Extract the dictionary form of each word. This option supports English, Japanese, and
Korean text only. If a word is not in the internal dictionary, then the function outputs the word
unchanged. For English text, the output is lowercase. For Japanese and Korean text, this value is
the default.

The function only normalizes tokens with type ' letters' and 'other'. For more information on
token types, see tokenDetails.

Tip For English text, to improve lemmatization of words in documents, first add part-of-speech
details using the addPart0fSpeechDetails function.

language — Word language
1 en 1 | 1 de 1

Word language, specified as one of the following:

* 'en' - English language
* 'de' - German language

If you do not specify language, then the software detects the language automatically. To lemmatize
Japanese or Korean text, use tokenizedDocument input.

Data Types: char | string

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array.

updatedWords — Updated words
string array | character vector | cell array of character vectors

Updated words, returned as a string array, character vector, or cell array of character vectors. words
and updatedWords have the same data type.

Algorithms
Language Details
tokenizedDocument objects contain details about the tokens including language details. The

language details of the input documents determine the behavior of normalizeWords. The
tokenizedDocument function, by default, automatically detects the language of the input text. To
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specify the language details manually, use the Language option of tokenizedDocument. To view the
token details, use the tokenDetails function.

Version History
Introduced in R2017b

R2018b: normalizeWords skips complex tokens
Behavior changed in R2018b

Starting in R2018b, for tokenizedDocument input, normalizeWords normalizes tokens with type
"letters' or 'other' only. This behavior prevents the function from affecting complex tokens such
as URLs and email-addresses.

In previous versions, normalizeWords normalizes all tokens. To reproduce this behavior, use the
command updatedDocuments = docfun(@(str) normalizeWords(str),documents).

See Also

removeStopWords | tokenDetails | removeWords | stopWords | removeShortWords |
removeLongWords | tokenizedDocument | bag0fWords | bagOfNgrams |
addPart0fSpeechDetails | addLemmaDetails

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

“Japanese Language Support”

“German Language Support”
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PDF file information

Syntax

info = pdfinfo(filename)

info = pdfinfo(filename,Password=password)

Description

info = pdfinfo(filename) returns information stored in the specified PDF file.

info = pdfinfo(filename,Password=password) also specifies the user or owner password to

read the PDF file.

Examples

Extract Information from PDF File

Extract the PDF information from the file exampleSonnets. pdf.

filename = "exampleSonnets.pdf";
info = pdfinfo(filename)

info = struct with fields:
NumPages: 47

PageSize: [47x4 double]
PDFVersion: "1.6"
Title: ""
Subject: ""
Language: "en-GB"
Keywords: ""
Author: "William Shakespeare"
Creator: "Microsoft® Word 2013"
Producer: "Microsoft® Word 2013"
CreationDate: 21-Jul-2017 11:53:33
ModificationDate: 28-Sep-2022 17:30:37
Encrypted: 0
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AllowsTextExtraction: 1
Filename: "C:\TEMP\exampleSonnets.pdf"

Input Arguments

filename — Name of file
string scalar | character vector | 1-by-1 cell array containing a character vector

Name of the file, specified as a string scalar, character vector, or a 1-by-1 cell array containing a
character vector.
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Data Types: string | char | cell

password — Password to open PDF file
string scalar | character vector

Password to open the PDF file, specified as a character vector or a string scalar.
Example: "skrowWhtaM"
Data Types: string | char

Output Arguments

info — PDF file information
structure

PDF file information, returned as a structure with these fields:

* NumPages — Number of pages
* PageSize — Size of the pages, specified as a NumPages-by-4 array. PageSize(n, :) is the vector
[left bottom width height] that corresponds to page n, where:
+ left is the distance of the left edge of the canvas to the left edge of the page in PDF points
(1/72 inch)

* bottomis the distance of the bottom edge of the canvas to the bottom edge of the page in PDF
points

* height is the height of the page in PDF points
* width is the width of the page in PDF points
* PDFVersion — Version of PDF file
* Title — Title stored in PDF file metadata
* Language — Language stored in PDF file metadata
+ Keywords — Keywords of PDF file
* Author — Author of PDF file
* Creator — Creator of PDF file
* Producer — Producer of PDF file
* CreationDate — Date and time when PDF file was created
* ModificationDate — Date and time when PDF file was last modified
* Encrypted — Flag indicating whether PDF file is encrypted
* AllowsTextExtraction — Flag indicating whether PDF file allows text extraction
* Filename — Filename of PDF file

Version History
Introduced in R2023a

See Also
extractFileText | extractHTMLText | readPDFFormData
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Topics

“Extract Text Data from Files”

“Parse HTML and Extract Text Content”
“Data Sets for Text Analytics”
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plus, +

Append documents

Syntax

newDocuments
newDocuments

documentsl + documents?2
plus(documentsl,documents2)

Description

newDocuments = documentsl + documents2 appends the documents in documents?2 to the
documents in documentsl.

newDocuments

= plus(documentsl,documents2) is equivalent to newDocuments =

documentsl + documents2.

Examples

Append Documents

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "s
str = extract
textData = sp
documents = t

onnetsPreprocessed. txt";
FileText(filename);
lit(str,newline);
okenizedDocument (textData);

Create arrays containing the first 5 and second 5 sonnets.

documentsl =

documentsl =
5x1 tokeniz

70 tokens:
71 tokens:
65 tokens:
71 tokens:
61 tokens:

documents2 =

documents2 =

documents(1:5)

edDocument:

fairest creatures desire increase thereby beautys rose might never die riper time
forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
look thy glass tell face thou viewest time face form another whose fresh repair ti
unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair

documents(6:10)

5x1 tokenizedDocument:

68 tokens
64 tokens

: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial
: lo orient gracious light lifts up burning head eye doth homage newappearing sight
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70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art bel

Append the second 5 sonnets to the first 5 sonnets.
newDocuments = documentsl + documents2

newDocuments =
5x1 tokenizedDocument:

138 tokens: fairest creatures desire increase thereby beautys rose might never die riper tim
135 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy you
135 tokens: look thy glass tell face thou viewest time face form another whose fresh repair -
141 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy nature:
130 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfai

Input Arguments

documentsl — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documentsl and documents2 must be
the same size.

documents2 — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documentsl and documents2 must be
the same size.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Version History
Introduced in R2017b

See Also
tokenDetails | addSentenceDetails | addPart0fSpeechDetails | eraseURLs |
normalizeWords | docfun | replace | tokenizedDocument | bagOfWords | bag0fNgrams

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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predict

Predict top LDA topics of documents

Syntax

topicldx = predict(ldaMdl,documents)
topicIdx = predict(ldaMdl,bag)

topicIdx = predict(ldaMdl, counts)
[topicIdx,score] = predict( )
= predict(_  ,Name,Value)
Description

topicIdx = predict(ldaMdl, documents) returns the LDA topic indices with the largest
probabilities for documents based on the LDA model 1daMd1l.

topicIdx = predict(ldaMdl, bag) returns the LDA topic indices with the largest probabilities
for the documents represented by a bag-of-words or bag-of-n-grams model.

topicIdx = predict(ldaMdl, counts) returns the LDA topic indices with the largest
probabilities for the documents represented by a matrix of word counts.

[topicIdx,score] = predict( ) also returns a matrix of posterior probabilities score.

= predict( ,Name, Value) specifies additional options using one or more name-value
pair arguments.

Examples

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bag0OfWords(documents)

bag =
bag0fWords with properties:
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Counts: [154x3092 doublel

Vocabulary: ["fairest" "creatures” "desire" "increase" "thereby" "beautys"
NumWords: 3092
NumDocuments: 154
Fit an LDA model with 20 topics.
numTopics = 20;
mdl = fitlda(bag,numTopics)
Initial topic assignments sampled in 0.106969 seconds.
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
[ 0 | 1.13 | | 1.159e+03 | 5.000 | 0 |
[ 1| 0.05 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
[ 2 | 0.06 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3| 0.06 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
[ 4 | 0.06 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
[ 5] 0.05 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
[ 6 | 0.05 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =
ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: ["fairest" "creatures" "desire" "increase" "thereby"

TopicOrder: 'initial-fit-probability'

FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument ([

"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."]);

topicldx = predict(mdl,newDocuments)
topicIdx = 2x1

19
8

Visualize the predicted topics using word clouds.

figure
subplot(1,2,1)
wordcloud(mdl, topicIdx(1));



predict

title("Topic

" + topicIdx(1l))

subplot(1,2,2)
wordcloud(mdl, topicIdx(2));
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Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat

size(counts)

ans = 1Ix2

154

3092

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to 'default’.

rng('default
numTopics =

")
20;

mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.128636 seconds.
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| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.02 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.06 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.07 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.06 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.05 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.08 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:

NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: ["1" "2 ch "4 "5 "6" A "g" "o
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Predict the top topics for the first 5 documents in counts.

topicIdx predict(mdl, counts(1:5,:))

topicIdx = 5x1

3
15
19

3
14

Calculate Topic Prediction Scores

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);
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Create a bag-of-words model using bag0fWords.
bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: ["fairest" "creatures"
NumWords: 3092
NumDocuments: 154

"desire"

"increase" "thereby" "beautys"

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Predict the top topics for a new document. Specify the iteration limit to be 200.

newDocument = tokenizedDocument("what's in a name? a rose by any other name would smell as sweet

iterationLimit = 200;
[topicIdx,scores] = predict(mdl,newDocument,
'TterationLimit',iterationLimit)

topicIdx = 19
scores = 1x20

0.0250 0.0250 0.0250 0.0250 0.1250

View the prediction scores in a bar chart.

figure

bar(scores)

title("LDA Topic Prediction Scores")
xlabel("Topic Index")
ylabel("Score")

0.0250 0.0250 0.0250 0.0250 0.
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Input Arguments

1daMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is a tokenizedDocument, then it must be a column vector. If
documents is a string array or a cell array of character vectors, then it must be a row of the words of
a single document.

Tip To ensure that the function does not discard useful information, you must first preprocess the
input documents using the same steps used to preprocess the documents used to train the model.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts (i, j) corresponds to the number of times the

jth word of the vocabulary appears in the ith document. Otherwise, the value counts (i, j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'IterationLimit', 200 specifies the iteration limit to be 200.

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* ‘'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns', then you might experience a significant reduction in optimization-
execution time.

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
‘IterationLimit’' and a positive integer.

Example: 'IterationLimit', 200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001
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Output Arguments

topicIldx — Predicted topic indices
vector of numeric indices

Predicted topic indices, returned as a vector of numeric indices.

score — Predicted topic probabilities
matrix

Predicted topic probabilities, returned as a D-by-K matrix, where D is the number of input documents
and K is the number of topics in the LDA model. score(1i, j) is the probability that topic j appears
in document i. Each row of score sums to one.

Version History
Introduced in R2017b

See Also
fitlda | logp | transform|wordcloud | bag0OfWords | LldaModel

Topics

“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”
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predict

Predict entities using named entity recognition (NER) model

Syntax

tbl = predict(mdl,documents)

Description
The predict function detects named entities in text using a hmmEntityModel object.

To add entity details to documents using a custom NER model, use addDependencyDetails and set
the Model option to the custom model.

tbl = predict(mdl,documents) predicts the named entities of the tokens in the specified
documents using the NER model mdl.

Examples

Make Predictions Using Custom HMM Entity Model

Load the trained example hmmEntityModel object.

load exampleEntityModel
mdl

mdl =
hmmEntityModel with properties:

Entities: [3x1 categorical]

Create a tokenized document object of text data.

str = "MathWorks develops MATLAB and Simulink.";
document = tokenizedDocument(str);

Make predictions using the predict function.
tbl = predict(mdl,document)

tbl=6x2 table

Token Entity
"MathWorks" B-organization
"develops" non-entity
"MATLAB" B-product
"and" non-entity
"Simulink" B-product

non-entity
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Input Arguments

mdl — Custom NER model
hmmEntityModel object

Custom NER model, specified as a hmmEntityModel object. To train a custom NER model, use the
trainHMMEntityModel function.

For an example, see “Train Custom Named Entity Recognition Model”.

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

tb1l — Predicted entities
table

Predicted entities, returned as a table with these variables:

* Token — Input token

* Entity — Predicted entity in IOB2 labeling scheme, for more information, see “Inside, Outside,
Beginning (I0B) Labeling Schemes” on page 2-304.

Algorithms
Inside, Outside, Beginning (I0B) Labeling Schemes

The inside, outside (10) labeling scheme tags entities with "0" or prefixes the entities with "I". The
tag "0" (outside) denotes non-entities. For each token in an entity, the tag is prefixed with "I-"
(inside), which denotes that the token is part of an entity.

A limitation of the 10 labeling scheme is that it does not specify entity boundaries between adjacent
entities of the same type. The inside, outside, beginning (I0B) labeling scheme, also known as the
beginning, inside, outside (BIO) labeling scheme, addresses this limitation by introducing a
"beginning" prefix.

There are two variants of the IOB labeling scheme: IOB1 and IOB2.

10B2 Labeling Scheme
For each token in an entity, the tag is prefixed with one of these values:

+ "B-" (beginning) — The token is a single token entity or the first token of a multi-token entity.
* "I-" (inside) — The token is a subsequent token of a multi-token entity.

For a list of entity tags Entity, the IOB labeling scheme helps identify boundaries between adjacent
entities of the same type by using this logic:

 IfEntity(i) has prefix "B-" and Entity(i+1) is "0" or has prefix "B-", then Token(i) is a
single entity.
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o IfEntity(i) has prefix "B-", Entity(i+1), ..., Entity(N) has prefix "I-", and Entity (N+1)
is "0" or has prefix "B-", then the phrase Token (i:N) is a multi-token entity.

I0B1 Labeling Scheme

The 10B1 labeling scheme do not use the prefix "B-" when an entity token follows an "0-" prefix. In
this case, an entity token that is the first token in a list or follows a non-entity token implies that the
entity token is the first token of an entity. That is, if Entity (i) has prefix "I-" and i is equal to 1 or
Entity(i-1) has prefix "0-", then Token(1i) is a single token entity or the first token of a multi-
token entity.

Alternative Functionality

To add entity details to documents using a custom NER model, use addDependencyDetails and set
the Model option to the custom model.

Version History
Introduced in R2023a

See Also
tokenizedDocument | addDependencyDetails | tokenDetails | trainHMMEntityModel |
hmmEntityModel

Topics

“Train Custom Named Entity Recognition Model”
“Prepare Text Data for Analysis”

“Analyze Sentiment in Text”
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Extract keywords using RAKE

Syntax

tbl = rakeKeywords(documents)
tbl rakeKeywords (documents,Name=Value)

Description

tbl = rakeKeywords(documents) extracts keywords and respective scores using the Rapid
Automatic Keyword Extraction (RAKE) algorithm. The function supports English, Japanese, German,
and Korean text. To learn how to use rakeKeywords for other languages, see “Language
Considerations” on page 2-310.

tbl = rakeKeywords(documents,Name=Value) specifies additional options using one or more
name-value arguments.

Tip The rakeKeywords function, by default, extracts keywords using stop words and punctuation
characters. When using the default values for the Delimiters and MergingDelimiters options, do
not remove stop words or punctuation characters from the input text.

Examples

Extract Keywords Using RAKE

Create an array of tokenized documents containing the text data.

textData = [
"MATLAB provides tools for scientists and engineers. MATLAB is used by scientists and engine
"Analyze text and images. You can import text and images."
"Analyze text and images. Analyze text, images, and videos in MATLAB."];

documents = tokenizedDocument(textData);

Extract the keywords using the rakeKeywords function.
tbl = rakeKeywords(documents)

tbl=12x3 table

Keyword DocumentNumber Score
"MATLAB" "provides" "tools" 1 8
"MATLAB" " " 1 2
"scientists" "and" "engineers" 1 2
"scientists" " " 1 1
"engineers" " " 1 1
"Analyze" "text" " 2 4
"import" "text" " 2 4
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"images" e e 2 1
"Analyze" "text" e 3 4
"images" " " 3 1
"videos" " " 3 1
"MATLAB" o " 3 1

If a keyword contains multiple words, then the ith element of the string array corresponds to the ith
word of the keyword. If the keyword has fewer words that the longest keyword, then remaining

entries of the string array are the empty string "".

For readability, transform the multi-word keywords into a single string using the join and strip
functions.

if size(tbl.Keyword,2) > 1

tbl.Keyword = strip(join(tbl.Keyword));
end
tbl

thl=12x3 table
Keyword DocumentNumber Score

"MATLAB provides tools" 1 8
"MATLAB" 1 2
"scientists and engineers" 1 2
"scientists" 1 1
"engineers" 1 1
"Analyze text" 2 4
"import text" 2 4
"images" 2 1
"Analyze text" 3 4
"images" 3 1
"videos" 3 1
"MATLAB" 3 1

Specify Maximum Number of Keywords Per Document

Create an array of tokenized document containing the text data.

textData = [
"MATLAB provides tools for scientists and engineers. MATLAB is used by scientists and engine
"Analyze text and images. You can import text and images."
"Analyze text and images. Analyze text, images, and videos in MATLAB."];

documents = tokenizedDocument(textData);

Extract the top two keywords using the rakeKeywords function and setting the MaxNumKeywords
option to 2.

tbl = rakeKeywords(documents,MaxNumKeywords=2)

tbl=6x3 table
Keyword DocumentNumber Score
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"MATLAB" "provides" "tools" 1 8
"MATLAB" e e 1 2
"Analyze" "text" e 2 4
"import" "text" e 2 4
"Analyze" "text" e 3 4
"images" " " 3 1

If a keyword contains multiple words, then the ith element of the string array corresponds to the ith
word of the keyword. If the keyword has fewer words that the longest keyword, then remaining
entries of the string array are the empty string "".

For readability, transform the multi-word keywords into a single string using the join and strip
functions.

if size(tbl.Keyword,2) > 1

tbl.Keyword = strip(join(tbl.Keyword));
end
tbl

tbl=6x3 table
Keyword DocumentNumber Score

"MATLAB provides tools"
"MATLAB"

"Analyze text"

"import text"

"Analyze text"

"images"

WWNNRFE R
A BBSNO©

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: rakeKeywords (documents,MaxNumKeywords=20) returns at most 20 keywords per
document.

MaxNumKeywords — Maximum number of keywords to return per document
Inf (default) | positive integer
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Maximum number of keywords to return per document, specified as a positive integer or Inf.

If MaxNumKeywords is Inf, then the function returns all identified keywords.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

IgnoreKeywordCase — Option to ignore keyword case
0 (false) (default) | 1 (true)

Option to ignore keyword case, specified as one of the following:

* 0 (false) - extract case-sensitive keywords.

* 1 (true) - extract keywords ignoring case. Use this option when you expect the same keywords to
appear with variations in letter case and want to treat them as the same keyword, for example, the
words "analytics", "Analytics", and "ANALYTICS".

When IgnoreKeywordCase is 1, the function returns keywords with the most commonly occurring
letter case pattern. When two or more patterns appear with the same frequency, then the function
returns the keyword with the letter case pattern that occurs first in the input.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical

Delimiters — Tokens for splitting documents into keywords
string array | character vector | cell array of character vectors

Tokens for splitting documents into keywords, specified a string array, a character vector, or a cell
array of character vectors. If Delimiters is a character vector, then it must represent a single
delimiter.

The default list of delimiters is a list of punctuation characters.

If multiple candidate keywords appear in a document separated only by merging delimiters, then the
function merges those keywords and the merging delimiters into a single keyword.

To specify delimiters for merging, use the MergingDelimiters option.

Data Types: char | string | cell

MergingDelimiters — Delimiters also used for merging keywords
string array | character vector | cell array of character vectors

Delimiters also used for merging keywords, specified as a string array, a character vector, or a cell
array of character vectors. If MergingDelimiters is a character vector, then it must represent a
single delimiter.

The default list of merging delimiters is the list of stop words given by the stopWords function.

If multiple candidate keywords appear in a document separated only by merging delimiters, then the
function merges those keywords and the merging delimiters into a single keyword.

To specify delimiters that should not be used for merging, use the Delimiters option.

Data Types: char | string | cell

IgnoreDelimiterCase — Option to ignore delimiter case
1 (true) (default) | 0 (false)
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Option to ignore delimiter case, specified as one of the following:

* 1 (true) - ignore delimiter case.
* 0 (false) - use case-sensitive delimiters. Use this option when you expect there to be keywords
and delimiters differ only by case, for example the delimiter "and" and the acronym "AND".

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical

Output Arguments

tbl — Extracted keywords and scores
table

Extracted keywords and scores, returned as a table with the following variables:
* Keyword - Extracted keyword, specified as a 1-by-maxNgramLength string array, where
maxNgramLength is the number of words in the longest keyword.

* DocumentNumber - Document number containing the corresponding keyword.
* Score - Score of keyword.

If multiple candidate keywords appear in a document separated only by merging delimiters, then the
function merges those keywords and the merging delimiters into a single keyword.

If a keyword contains multiple words, then the ith element of the corresponding string array
corresponds to the ith word of the keyword. If the keyword has fewer words that the longest
keyword, then remaining entries of the string array are the empty string "".

For more information, see “Rapid Automatic Keyword Extraction” on page 2-311.

More About

Language Considerations
The rakeKeywords function supports English, Japanese, German, and Korean text only.

The rakeKeywords function extracts keywords using a delimiter-based approach to identify
candidate keywords. The function, by default, uses punctuation characters and the stop words given
by the stopWords with language given by the language details of the input documents as delimiters.

For other languages, specify an appropriate set of delimiters using the Delimiters and
MergingDelimiters options.

Tips

* You can experiment with different keyword extraction algorithms to see what works best with your
data. Because the RAKE keywords algorithm uses a delimiter-based approach to extract candidate
keywords, the extracted keywords can be very long. Alternatively, you can try extracting keywords
using TextRank algorithm which starts with individual tokens as candidate keywords and then
merges them when appropriate. To extract keywords using TextRank, use the
textrankKeywords function. To learn more, see “Extract Keywords from Text Data Using
TextRank”.
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Algorithms
Rapid Automatic Keyword Extraction

For each document, the rakeKeywords function extracts keywords independently using the
following steps based on [1]:

1 Determine candidate keywords:

* Extract sequences of tokens between the delimiters specified by the Delimiters and
MergingDelimiters options. The function treats each sequence as a single candidate
keyword.

2 Calculate scores for the candidate keywords:
* Create an undirected, unweighted graph with nodes corresponding to the individual tokens in
the candidate keywords.

* Add edges between nodes where tokens co-occur in a candidate keyword, including self co-
occurrences, weighted by the number of candidate keywords containing that co-occurrence.

* Score each token using the formula deg (token) / freq(token), where deg(token) is
the number of edges for the specified token and freq(token) is the number of times that
the specified token occurs in the document.

» For each candidate keyword, assign a score given by the sum of scores of the contained
tokens.

3  Extract top keywords from candidates:
» If there are multiple instances of the same pair of candidate keywords separated by the same

single merging delimiter, then merge the candidate keywords and the delimiter into a single
keyword and sum the corresponding scores.

* Return the top k keywords, where k is given by the MaxNumKeywords option.
Language Details

tokenizedDocument objects contain details about the tokens including language details. The
language details of the input documents determine the behavior of rakeKeywords. The
tokenizedDocument function, by default, automatically detects the language of the input text. To
specify the language details manually, use the Language option of tokenizedDocument. To view the
token details, use the tokenDetails function.

Version History
Introduced in R2020b

References

[1] Rose, Stuart, Dave Engel, Nick Cramer, and Wendy Cowley. "Automatic keyword extraction from
individual documents." Text mining: applications and theory 1 (2010): 1-20.

See Also
tokenizedDocument | textrankKeywords | extractSummary
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Topics
“Extract Keywords from Text Data Using RAKE”
“Extract Keywords from Text Data Using TextRank”
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rangesearch

Find nearest neighbors by edit distance range

Syntax

idx = rangesearch(eds,words,maxDist)
[idx,d] = rangesearch(eds,words,maxDist)

Description

idx = rangesearch(eds,words,maxDist) finds all the words in eds that are within distance
maxDist of the words in words.

[idx,d] = rangesearch(eds,words,maxDist) also returns the edit distances of the
corresponding words.

Examples

Find Nearest Neighbors in Range

Create an edit distance searcher and specify a maximum edit distance of 3.

vocabulary = ["MathWorks" "MATLAB" "Simulink" "text" "analytics" "analysis"];
maxDist = 3;
eds = editDistanceSearcher(vocabulary,maxDist);

Find the nearest words to "test", "analytic", and "analyze" with edit distance less than or
equal to 1.

words = ["test" "analytic
maxDist = 1;
idx = rangesearch(eds,words,maxDist)

analyze"];

idx=3x1 cell array
{I 41}

{I 51}
{1x0 double}

For "analyze", there are no words in the searcher within the specified range. For "test" and
"analytic", there is one result each. View the corresponding word for "test" using the returned
index.

nearestWords = eds.Vocabulary(idx{2})

nearestWords
"analytics"

Find the nearest words to "test", "analytic", and "analyze" with edit distance less than or
equal to 3 and their corresponding edit distances.
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maxDist 3;

words = ["test" "analytic" "analyze"];
[idx,d] = rangesearch(eds,words,maxDist)

idx=3x1 cell array
{l 41}
{[5 61}
{l 61}

d=3x1 cell array

{[ 11}
{[1 2]}
{[ 31}

For both "test" and "analyze", there is one word in the searcher within the specified range. For
"analytic", there are two results. View the corresponding words for "analytic" (the second
word) using the returned indices and their edit distances.

i=2;
nearestWords = eds.Vocabulary(idx{i})

nearestWords = 1x2 string
"analytics" "analysis"

d{i}
ans = 1x2

1 2

Input Arguments

eds — Edit distance searcher
editDistanceSearcher

Edit distance searcher, specified as an editDistanceSearcher object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

maxDist — Maximum search distance
non-negative number

Maximum search distance, specified as a non-negative number.

The function finds the indices of the words in eds whose edit distance to the elements of words are
fewer than or equal to maxDist, sorted in the ascending order edit distance.
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Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Output Arguments

idx — Indices of nearest neighbors in searcher
cell array of vectors

Indices of nearest neighbors in the searcher, returned as a cell array of vectors.

idx{i} is a vector of indices of the words in eds whose edit distance to words (i) is less than or
equal to maxDist, sorted in the ascending order edit distance.

Data Types: cell

d — Edit distances to neighbors
cell array of vectors

Edit distances to neighbors, returned as a cell array of vectors.

d{1i} is a vector of edit distances between words (i) and the corresponding words in eds given by
the vocabulary indices idx{i}.

Data Types: cell

Version History
Introduced in R2019a

See Also
correctSpelling | editDistance | editDistanceSearcher | knnsearch | splitGraphemes |
tokenizedDocument

Topics

“Correct Spelling in Documents”

“Create Extension Dictionary for Spelling Correction”

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”

2-315



2 Functions

2-316

ratioSentimentScores

Sentiment scores with ratio rule

Syntax

compoundScores = ratioSentimentScores(documents)
[compoundScores,positiveScores,negativeScores] = ratioSentimentScores(
documents)

= ratioSentimentScores(  ,Name,Value)

Description

Use ratioSentimentScores to evaluate sentiment in tokenized text with a ratio rule. The
ratioSentimentScores function, by default, uses the VADER sentiment lexicon.

compoundScores = ratioSentimentScores(documents) returns sentiment scores for
tokenized documents based on the ratio of positive and negative tokens. For each document where
the ratio of the positive score to negative score is larger than 1, the function returns 1. For each
document where the ratio of the negative score to positive score is larger than 1, the function returns
-1. Otherwise, the function returns 0.

[compoundScores,positiveScores,negativeScores] = ratioSentimentScores(
documents) also returns the sums of the positive and negative token scores of the documents
respectively.

= ratioSentimentScores( ,Name, Value) specifies additional options using one or

more name-value pairs.

Examples

Evaluate Sentiment in Text

Create a tokenized document.

str = [
"The book was VERY good!!!!"
"The book was terrible."];
documents = tokenizedDocument(str);

Evaluate the sentiment of the tokenized documents. A score of 1 indicates positive sentiment, a score
of -1 indicates negative sentiment, and a score of 0 indicates neutral sentiment.

compoundScores ratioSentimentScores(documents)

2x1

compoundScores

1
-1
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Evaluate Sentiment Using Custom Lexicon

Sentiment analysis algorithms rely on annotated lists of words called sentiment lexicons. For
example, the ratioSentimentScores function uses a sentiment lexicon with words annotated with
a sentiment score ranging from -1 to 1, where scores close to 1 indicate strong positive sentiment,
scores close to -1 indicate strong negative sentiment, and scores close to zero indicate neutral
sentiment.

If the sentiment lexicon used by the ratioSentimentScores function does not suit the data you are
analyzing, for example, if you have a domain-specific data set like medical or engineering data, then
you can use your own custom sentiment lexicon. For an example showing how to generate a domain
specific sentiment lexicon, see “Generate Domain Specific Sentiment Lexicon”.

Create a tokenized document array containing the text data to analyze.

textData = [

"This company is showing extremely strong growth."

"This other company is accused of misleading consumers."];
documents = tokenizedDocument (textData);

Load the example domain specific lexicon for finance data.

filename = "financeSentimentLexicon.csv";
tbl = readtable(filename);
head (tbl)

Token SentimentScore

{'opportunities'} 0.95633
{'innovative' } 0.89635
{'success' } 0.84362
{'focused"' } 0.83768
{'strong' } 0.81042
{'capabilities' } 0.79174
{'innovation' } 0.77698
{'improved' } 0.77176

Evaluate the sentiment using the ratioSentimentScores function and specify the custom
sentiment lexicon using the 'SentimentLexicon' option. A score of 1 indicates positive sentiment,
a score of -1 indicates negative sentiment, and a score of 0 indicates neutral sentiment.

compoundScores = ratioSentimentScores(documents, 'SentimentLexicon',tbl)
compoundScores = 2x1

1

-1

Input Arguments

documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: Threshold, 0.5 sets the ratio threshold to 0.5

SentimentLexicon — Sentiment lexicon
table

Sentiment lexicon, specified as a table with the following columns:

* Token - Token, specified as a string scalar.
* SentimentScore - Sentiment score of token, specified as a numeric scalar.
The default sentiment lexicon is the VADER sentiment lexicon.

Data Types: table

Threshold — Ratio threshold
1 (default) | nonnegative scalar

Ratio threshold, specified as a nonnegative scalar.

If the ratio of the positive score to negative score of documents (i) is larger than Threshold, then
compoundScores (i) is 1. If the ratio of the negative score to positive score of documents (i) is
larger than Threshold, then compoundScores (i) is -1. Otherwise, compoundScores (i) is 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Output Arguments

compoundScores — Compound sentiment scores
numeric vector

Compound sentiment scores, returned as a numeric vector. The function returns one score for each
input document.

If the ratio of the positive score to negative score of documents (i) is larger than Threshold, then
compoundScores (i) is 1. If the ratio of the negative score to positive score of documents (i) is
larger than Threshold, then compoundScores (i) is -1. Otherwise, compoundScores (i) is 0.

positiveScores — Positive sentiment scores
numeric vector

Positive sentiment scores, returned as a numeric vector. The function returns one score for each input
document. The value positiveScores (i) corresponds to the positive sentiment score of
documents(i).

negativeScores — Negative sentiment scores
numeric vector
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ratioSentimentScores

Negative sentiment scores, returned as a numeric vector. The function returns one score for each
input document. The value negativeScores (i) corresponds to the negative sentiment score of
documents(i).

Version History
Introduced in R2019b

See Also
vaderSentimentScores | tokenizedDocument

Topics

“Analyze Sentiment in Text”

“Generate Domain Specific Sentiment Lexicon”
“Train a Sentiment Classifier”

“Create Simple Text Model for Classification”
“Analyze Text Data Containing Emojis”
“Analyze Text Data Using Topic Models”
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2 Functions

readPDFFormData

Read data from PDF forms

Syntax

data
data

readPDFFormData(filename)
readPDFFormData(filename, 'Password', password)

Description

data

readPDFFormData(filename) reads the data from a PDF form into a struct.

data = readPDFFormData(filename, 'Password', password) specifies the password for
opening the PDF form.

Examples

Read Data from PDF Form

Read the data from the form fields in weatherReportForml. pdf using readPDF